File size: 9,832 Bytes
ceec7c0
 
 
 
07ff622
4d1e2f9
ceec7c0
07ff622
ceec7c0
 
 
 
 
 
 
 
 
4d71b60
 
 
 
cd9bf75
4d71b60
 
 
 
 
 
 
 
 
 
ceec7c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d71b60
ceec7c0
4d71b60
56c60c2
a907c4f
4d71b60
 
 
 
07ff622
ceec7c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0114908
ceec7c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07ff622
 
 
ceec7c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import json
import pickle
from datetime import datetime, date

import gradio as gr
import pandas as pd
import plotly.graph_objects as go


def create_big_five_capex_plot():
    # Capex in Millions of USD per Quarter of Microsoft, Google, Meta, Apple, Amazon
    big_five_capex = []
    with open("big_five_capex.jsonl", 'r') as file:
        for line in file:
            big_five_capex.append(json.loads(line))

    df = pd.DataFrame(big_five_capex)
    
    fig = go.Figure()
    
    companies = ['Microsoft', 'Google', 'Meta', 'Apple', 'Amazon']
    colors = ['#80bb00', '#ee161f', '#0065e3', '#000000', '#ff6200']
    
    for company, color in zip(companies, colors):
        fig.add_trace(go.Bar(
            x=df['Quarter'],
            y=df[company],
            name=company,
            marker_color=color
        ))
    
    fig.update_layout(
        title='Capital Expenditure of the Big Five Tech Companies in Millions of U.S. Dollars per Quarter',
        xaxis_title='Quarter',
        yaxis_title='Capex (Millions of U.S. Dollars)',
        barmode='stack',
        legend_title='Companies',
        height=800
    )

    return fig


def create_chip_designers_data_center_revenue_plot():
    # Data Center Revenue in Millions of USD per Quarter of NVIDIA, AMD and Intel
    data_center_revenue_by_company = []
    with open("chip_designers_data_center_revenue.jsonl", 'r') as file:
        for line in file:
            data_center_revenue_by_company.append(json.loads(line))

    df = pd.DataFrame(data_center_revenue_by_company)

    fig = go.Figure()

    companies = ['NVIDIA', 'AMD', 'Intel']
    colors = ['#80bb00', '#ee161f', '#0065e3']  # TODO

    for company, color in zip(companies, colors):
        fig.add_trace(go.Bar(
            x=df['Quarter'],
            y=df[company],
            name=company,
            marker_color=color
        ))

    fig.update_layout(
        title='Data Center Revenue of NVIDIA, AMD and Intel in Millions of U.S. Dollars per Quarter',
        xaxis_title='Quarter',
        yaxis_title='Data Center Revenue (Millions of U.S. Dollars)',
        barmode='stack',
        legend_title='Companies',
        height=800
    )

    return fig


def create_size_for_performance_plot(category_to_display: str,
                                     parameter_type_to_display: str,
                                     model_to_compare: str) -> (go.Figure, gr.Dropdown, gr.Dropdown):
    with open('elo_results_20240823.pkl', 'rb') as file:
        elo_results = pickle.load(file)
    categories: list[str] = list(elo_results["text"].keys())
    if category_to_display not in categories:
        raise gr.Error(message=f"Category '{category_to_display}' not found.")
    elo_ratings_for_category: dict = dict(elo_results["text"][category_to_display]["elo_rating_final"])

    models: list[dict] = []
    with open("models.jsonl", 'r') as file:
        for line in file:
            models.append(json.loads(line))

    size_for_performance_data: list[dict] = []
    for model_name, model_elo_rating in elo_ratings_for_category.items():
        model_entries_found = [model for model in models if model["Name"] == model_name]
        if model_entries_found:
            size_for_performance_data.append({
                "Name": model_name,
                "Release Date": model_entries_found[0]["Release Date"],
                "ELO Rating": model_elo_rating,
                parameter_type_to_display: model_entries_found[0][parameter_type_to_display]
            })
        else:
            print(f"[WARNING] Model '{model_name}' not found in models.jsonl")

    comparison_model_elo_score = elo_ratings_for_category[model_to_compare]
    filtered_models = [model for model in size_for_performance_data
                       if model[parameter_type_to_display] > 0 and
                       model['ELO Rating'] >= comparison_model_elo_score]

    filtered_models.sort(key=lambda x: datetime.strptime(x['Release Date'], "%Y-%m-%d"))

    x_dates = [datetime.strptime(model['Release Date'], "%Y-%m-%d") for model in filtered_models]
    y_params = []
    min_param = float('inf')
    for model in filtered_models:
        param = model[parameter_type_to_display]
        if param <= min_param:
            min_param = param
        y_params.append(min_param)

    fig = go.Figure()

    fig.add_trace(go.Scatter(
        x=x_dates,
        y=y_params,
        mode='lines',
        line=dict(shape='hv', width=2),
        name='Model Parameters'
    ))

    fig.update_layout(
        title=f'Model Size Progression for Open-Weights Models Reaching Performance of "{model_to_compare}" in "{category_to_display}" Category',
        xaxis_title='Release Date',
        yaxis_title=parameter_type_to_display,
        yaxis_type='log',
        hovermode='x unified',
        xaxis=dict(
            range=[date(2023, 2, 27), date(2024, 8, 23)],
            type='date'
        ),
        height=800
    )

    for i, model in enumerate(filtered_models):
        if i == 0 or y_params[i] < y_params[i - 1]:
            fig.add_trace(go.Scatter(
                x=[x_dates[i]],
                y=[y_params[i]],
                mode='markers+text',
                marker=dict(size=10),
                text=[model['Name']],
                textposition="top center",
                name=model['Name']
            ))

    return (fig,
            gr.Dropdown(choices=categories, value=category_to_display, interactive=True),
            gr.Dropdown(choices=list(elo_ratings_for_category.keys()), value=model_to_compare, interactive=True))


with gr.Blocks() as demo:
    with gr.Tab("Finance"):
        with gr.Tab("Big Five Capex"):
            big_five_capex_plot: gr.Plot = gr.Plot()
            big_five_capex_button: gr.Button = gr.Button("Show")
        with gr.Tab("Chip Designers Data Center Revenue"):
            chip_designers_data_center_revenue_plot: gr.Plot = gr.Plot()
            chip_designers_data_center_revenue_button: gr.Button = gr.Button("Show")
    with gr.Tab("Model Efficiency"):
        with gr.Tab("Parameters Necessary for Specific Performance Level"):
            with gr.Row():
                size_for_performance_category_dropdown: gr.Dropdown = gr.Dropdown(label="Category",
                                                                                  value="full",
                                                                                  choices=["full"],
                                                                                  interactive=False)
                size_for_performance_parameter_number_dropdown: gr.Dropdown = gr.Dropdown(label="Parameter Number",
                                                                                          choices=["Total Parameters",
                                                                                                   "Active Parameters"],
                                                                                          value="Total Parameters",
                                                                                          interactive=True)
                size_for_performance_comparison_model_dropdown: gr.Dropdown = gr.Dropdown(label="Model for Comparison",
                                                                                          value="gpt-4-0314",
                                                                                          choices=["gpt-4-0314"],
                                                                                          interactive=False)
            size_for_performance_plot: gr.Plot = gr.Plot()
            size_for_performance_button: gr.Button = gr.Button("Show")
            size_for_performance_markdown: gr.Markdown = gr.Markdown(
                value="""Model performance as reported on [LMSYS Chatbot Arena Leaderboard](https://lmarena.ai/?leaderboard)."""
            )
        with gr.Tab("API Cost for Specific Performance Level", interactive=False):
            api_cost_for_performance_plot: gr.Plot = gr.Plot()
            api_cost_for_performance_button: gr.Button = gr.Button("Show")
    with gr.Tab("AI System Performance", interactive=False):
        with gr.Tab("SWE-bench"):
            swe_bench_plot: gr.Plot = gr.Plot()
            swe_bench_button: gr.Button = gr.Button("Show")
        with gr.Tab("GAIA"):
            gaia_plot: gr.Plot = gr.Plot()
            gaia_button: gr.Button = gr.Button("Show")
    with gr.Tab("Frontier Language Model Training Runs", interactive=False):
        with gr.Tab("Street Price of GPUs Used"):
            gpu_street_price_plot: gr.Plot = gr.Plot()
            gpu_street_price_button: gr.Button = gr.Button("Show")
        with gr.Tab("TDP of GPUs Used"):
            tdp_gpus_plot: gr.Plot = gr.Plot()
            tdp_gpus_button: gr.Button = gr.Button("Show")
    big_five_capex_button.click(fn=create_big_five_capex_plot, outputs=big_five_capex_plot)
    chip_designers_data_center_revenue_button.click(fn=create_chip_designers_data_center_revenue_plot,
                                                    outputs=chip_designers_data_center_revenue_plot)
    size_for_performance_button.click(fn=create_size_for_performance_plot,
                                      inputs=[size_for_performance_category_dropdown,
                                              size_for_performance_parameter_number_dropdown,
                                              size_for_performance_comparison_model_dropdown],
                                      outputs=[size_for_performance_plot,
                                               size_for_performance_category_dropdown,
                                               size_for_performance_comparison_model_dropdown])


if __name__ == "__main__":
    demo.launch()