import os import sys import logging from pathlib import Path import json from datetime import datetime from typing import List, Dict, Any, Optional # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Importing necessary libraries import torch import numpy as np from sentence_transformers import SentenceTransformer import chromadb from chromadb.utils import embedding_functions import gradio as gr from openai import OpenAI import google.generativeai as genai # Configuration class class Config: """Configuration for vector store and RAG""" def __init__(self, local_dir: str = ".", embedding_model: str = "all-MiniLM-L6-v2", collection_name: str = "markdown_docs"): self.local_dir = local_dir self.embedding_model = embedding_model self.collection_name = collection_name # Embedding engine class EmbeddingEngine: """Handle embeddings with a lightweight model""" def __init__(self, model_name="all-MiniLM-L6-v2"): # Use GPU if available self.device = "cuda" if torch.cuda.is_available() else "cpu" logger.info(f"Using device: {self.device}") # Try multiple model options in order of preference model_options = [ model_name, "all-MiniLM-L6-v2", "paraphrase-MiniLM-L3-v2", "all-mpnet-base-v2" # Higher quality but larger model ] self.model = None # Try each model in order until one works for model_option in model_options: try: logger.info(f"Attempting to load model: {model_option}") self.model = SentenceTransformer(model_option) # Move model to device self.model.to(self.device) logger.info(f"Successfully loaded model: {model_option}") self.model_name = model_option self.vector_size = self.model.get_sentence_embedding_dimension() break except Exception as e: logger.warning(f"Failed to load model {model_option}: {str(e)}") if self.model is None: logger.error("Failed to load any embedding model. Exiting.") sys.exit(1) class VectorStoreManager: """Manage Chroma vector store operations - upload, query, etc.""" def __init__(self, config: Config): self.config = config # Initialize Chroma client (local persistence) logger.info(f"Initializing Chroma at {config.local_dir}") self.client = chromadb.PersistentClient(path=config.local_dir) # Get or create collection try: # Initialize embedding model logger.info("Loading embedding model...") self.embedding_engine = EmbeddingEngine(config.embedding_model) logger.info(f"Using model: {self.embedding_engine.model_name}") # Create embedding function sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction( model_name=self.embedding_engine.model_name ) # Try to get existing collection try: self.collection = self.client.get_collection( name=config.collection_name, embedding_function=sentence_transformer_ef ) logger.info(f"Using existing collection: {config.collection_name}") except Exception as e: logger.error(f"Error getting collection: {e}") # Attempt to get a list of available collections collections = self.client.list_collections() if collections: logger.info(f"Available collections: {[c.name for c in collections]}") # Use the first available collection if any self.collection = self.client.get_collection( name=collections[0].name, embedding_function=sentence_transformer_ef ) logger.info(f"Using collection: {collections[0].name}") else: # Create new collection if none exist self.collection = self.client.create_collection( name=config.collection_name, embedding_function=sentence_transformer_ef, metadata={"hnsw:space": "cosine"} ) logger.info(f"Created new collection: {config.collection_name}") except Exception as e: logger.error(f"Error initializing Chroma collection: {e}") sys.exit(1) def query(self, query_text: str, n_results: int = 5) -> List[Dict]: """ Query the vector store with a text query """ try: # Query the collection search_results = self.collection.query( query_texts=[query_text], n_results=n_results, include=["documents", "metadatas", "distances"] ) # Format results results = [] if search_results["documents"] and len(search_results["documents"][0]) > 0: for i in range(len(search_results["documents"][0])): results.append({ 'document': search_results["documents"][0][i], 'metadata': search_results["metadatas"][0][i], 'score': 1.0 - search_results["distances"][0][i] # Convert distance to similarity }) return results except Exception as e: logger.error(f"Error querying collection: {e}") return [] def get_statistics(self) -> Dict[str, Any]: """Get statistics about the vector store""" stats = {} try: # Get collection count collection_info = self.collection.count() stats['total_documents'] = collection_info # Estimate unique files - with no chunking, each document is a file stats['unique_files'] = collection_info except Exception as e: logger.error(f"Error getting statistics: {e}") stats['error'] = str(e) return stats class RAGSystem: """Retrieval-Augmented Generation with multiple LLM providers""" def __init__(self, vector_store: VectorStoreManager): self.vector_store = vector_store self.openai_client = None self.gemini_configured = False def setup_openai(self, api_key: str): """Set up OpenAI client with API key""" try: self.openai_client = OpenAI(api_key=api_key) return True except Exception as e: logger.error(f"Error initializing OpenAI client: {e}") return False def setup_gemini(self, api_key: str): """Set up Gemini with API key""" try: genai.configure(api_key=api_key) self.gemini_configured = True return True except Exception as e: logger.error(f"Error configuring Gemini: {e}") return False def format_context(self, documents: List[Dict]) -> str: """Format retrieved documents into context for the LLM""" if not documents: return "No relevant documents found." context_parts = [] for i, doc in enumerate(documents): metadata = doc['metadata'] title = metadata.get('title', metadata.get('filename', 'Unknown document')) # For readability, limit length of context document doc_text = doc['document'] if len(doc_text) > 10000: # Limit long documents in context doc_text = doc_text[:10000] + "... [Document truncated for context]" context_parts.append(f"Document {i+1} - {title}:\n{doc_text}\n") return "\n".join(context_parts) def generate_response_openai(self, query: str, context: str) -> str: """Generate a response using OpenAI model with context""" if not self.openai_client: return "Error: OpenAI API key not configured. Please enter an API key in the API key field." system_prompt = """ You are a helpful assistant that answers questions based on the context provided. Use the information from the context to answer the user's question. If the context doesn't contain the information needed, say so clearly. Always cite the specific sections from the context that you used in your answer. """ try: response = self.openai_client.chat.completions.create( model="gpt-4o-mini", # Use GPT-4o mini messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": f"Context:\n{context}\n\nQuestion: {query}"} ], temperature=0.3, # Lower temperature for more factual responses max_tokens=5000, ) return response.choices[0].message.content except Exception as e: logger.error(f"Error generating response with OpenAI: {e}") return f"Error generating response with OpenAI: {str(e)}" def generate_response_gemini(self, query: str, context: str) -> str: """Generate a response using Gemini with context""" if not self.gemini_configured: return "Error: Google AI API key not configured. Please enter an API key in the API key field." prompt = f""" Loss Dog You are a highly intelligent AI specializing in labor market analysis, job trends, and skillset forecasting. You utilize a combination of structured data from sources like the Bureau of Labor Statistics (BLS) and the World Economic Forum (WEF), alongside advanced retrieval-augmented generation (RAG) techniques. Your mission is to provide insightful, data-driven, and comprehensive answers to users seeking career and job market intelligence. You must ensure clarity, depth, and practical relevance in all responses. Friendly, professional, and engaging Detailed, nuanced, and well-explained Well-structured with headings, citations, and easy-to-follow breakdowns Bureau of Labor Statistics (BLS) World Economic Forum (WEF) reports Market research studies Industry whitepapers Company hiring trends Use precise statistics, industry insights, and expert analyses from retrieved sources to craft an evidence-based answer. Clearly state that the exact data is unavailable. However, provide a **comprehensive explanation** using logical deduction, adjacent industry trends, historical patterns, and economic principles. 100-500 words, depending on complexity and sources available
Introduction (sets context and purpose)
Data-backed analysis (citing retrieved sources)
Logical deduction and reasoning (when necessary)
Conclusion (summarizes insights and provides actionable takeaways)
Clearly cite data sources within the response (e.g., "According to BLS 2024 report..."). Encourage follow-up questions and deeper exploration where relevant.
Context: {context} Question: {query} """ try: model = genai.GenerativeModel('gemini-1.5-flash') response = model.generate_content(prompt) return response.text except Exception as e: logger.error(f"Error generating response with Gemini: {e}") return f"Error generating response with Gemini: {str(e)}" def query_and_generate(self, query: str, n_results: int = 5, model: str = "openai") -> str: """Retrieve relevant documents and generate a response using the specified model""" # Query vector store documents = self.vector_store.query(query, n_results=n_results) if not documents: return "No relevant documents found to answer your question." # Format context context = self.format_context(documents) # Generate response with the appropriate model if model == "openai": return self.generate_response_openai(query, context) elif model == "gemini": return self.generate_response_gemini(query, context) else: return f"Unknown model: {model}" # Main function to run the application def main(): # Initialize the system with current directory as the Chroma location config = Config( local_dir=".", # Look for Chroma files in current directory collection_name="markdown_docs" ) try: # Initialize vector store manager with existing collection vector_store = VectorStoreManager(config) # Initialize RAG system without API keys initially rag_system = RAGSystem(vector_store) # Create the Gradio interface with gr.Blocks(title="Document RAG System") as app: gr.Markdown("# Document RAG System") with gr.Row(): with gr.Column(scale=1): # API Keys and model selection model_choice = gr.Radio( choices=["openai", "gemini"], value="openai", label="Choose LLM Provider", info="Select which model to use (GPT-4o mini or Gemini 1.5 Flash)" ) api_key_input = gr.Textbox( label="API Key", placeholder="Enter your API key here...", type="password" ) save_key_button = gr.Button("Save API Key", variant="primary") api_status = gr.Markdown("") # Search controls num_results = gr.Slider( minimum=1, maximum=10, value=10, step=1, label="Number of documents to retrieve" ) # Database stats gr.Markdown("### Database Statistics") stats_display = gr.Textbox( label="", value=get_db_stats(vector_store), lines=2 ) refresh_button = gr.Button("Refresh Stats") with gr.Column(scale=2): # Query and response query_input = gr.Textbox( label="Your Question", placeholder="Ask a question about your documents...", lines=2 ) query_button = gr.Button("Ask Question", variant="primary") gr.Markdown("### Response") response_output = gr.Markdown() gr.Markdown("### Document Search Results") search_output = gr.Markdown() # Function to update API key based on selected model def update_api_key(api_key, model): if model == "openai": success = rag_system.setup_openai(api_key) model_name = "OpenAI GPT-4o mini" else: success = rag_system.setup_gemini(api_key) model_name = "Google Gemini 1.5 Flash" if success: return f"✅ {model_name} API key configured successfully" else: return f"❌ Failed to configure {model_name} API key" # Query function that returns both response and search results def query_and_search(query, n_results, model): # Get search results first results = vector_store.query(query, n_results=int(n_results)) # Format search results formatted_results = [] for i, res in enumerate(results): metadata = res['metadata'] title = metadata.get('title', metadata.get('filename', 'Unknown')) preview = res['document'][:500] + '...' if len(res['document']) > 500 else res['document'] formatted_results.append(f"**Result {i+1}** (Similarity: {res['score']:.2f})\n" f"**Source:** {title}\n" f"**Preview:**\n{preview}\n\n---\n") search_output_text = "\n".join(formatted_results) if formatted_results else "No results found." # Generate response if we have results response = "No documents found to answer your question." if results: context = rag_system.format_context(results) if model == "openai": response = rag_system.generate_response_openai(query, context) else: response = rag_system.generate_response_gemini(query, context) return response, search_output_text # Set up events save_key_button.click( fn=update_api_key, inputs=[api_key_input, model_choice], outputs=api_status ) query_button.click( fn=query_and_search, inputs=[query_input, num_results, model_choice], outputs=[response_output, search_output] ) refresh_button.click( fn=lambda: get_db_stats(vector_store), inputs=None, outputs=stats_display ) # Launch the interface app.launch() except Exception as e: logger.error(f"Error initializing application: {e}") print(f"Error: {e}") sys.exit(1) # Helper function to get database stats def get_db_stats(vector_store): """Function to get vector store statistics""" try: stats = vector_store.get_statistics() return f"Total documents: {stats.get('total_documents', 0)}" except Exception as e: logger.error(f"Error getting statistics: {e}") return "Error getting database statistics" if __name__ == "__main__": main()