Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,193 +4,48 @@ import logging
|
|
| 4 |
from pathlib import Path
|
| 5 |
import json
|
| 6 |
from datetime import datetime
|
| 7 |
-
from typing import List, Dict, Any, Optional
|
| 8 |
-
import traceback
|
| 9 |
|
| 10 |
-
# Configure
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
log_file = os.path.join(LOG_DIR, f"rag_system_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log")
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
logger = logging.getLogger("rag_system")
|
| 25 |
-
logger.info(f"Starting RAG system. Log file: {log_file}")
|
| 26 |
-
|
| 27 |
-
# Importing necessary libraries with error handling
|
| 28 |
-
try:
|
| 29 |
-
import torch
|
| 30 |
-
import numpy as np
|
| 31 |
-
from sentence_transformers import SentenceTransformer
|
| 32 |
-
import chromadb
|
| 33 |
-
from chromadb.utils import embedding_functions
|
| 34 |
-
import gradio as gr
|
| 35 |
-
from openai import OpenAI
|
| 36 |
-
import google.generativeai as genai
|
| 37 |
-
logger.info("All required libraries successfully imported")
|
| 38 |
-
except ImportError as e:
|
| 39 |
-
logger.critical(f"Failed to import required libraries: {e}")
|
| 40 |
-
print(f"ERROR: Missing required libraries. Please install with: pip install -r requirements.txt")
|
| 41 |
-
print(f"Specific error: {e}")
|
| 42 |
-
sys.exit(1)
|
| 43 |
-
|
| 44 |
-
# Version info for tracking
|
| 45 |
-
VERSION = "1.1.0"
|
| 46 |
-
logger.info(f"RAG System Version: {VERSION}")
|
| 47 |
-
|
| 48 |
-
# Custom CSS for better UI
|
| 49 |
-
custom_css = """
|
| 50 |
-
.gradio-container {
|
| 51 |
-
max-width: 1200px;
|
| 52 |
-
margin: auto;
|
| 53 |
-
}
|
| 54 |
-
.gr-prose h1 {
|
| 55 |
-
font-size: 2.5rem;
|
| 56 |
-
margin-bottom: 1rem;
|
| 57 |
-
color: #1a5276;
|
| 58 |
-
}
|
| 59 |
-
.gr-prose h3 {
|
| 60 |
-
font-size: 1.25rem;
|
| 61 |
-
font-weight: 600;
|
| 62 |
-
margin-top: 1rem;
|
| 63 |
-
margin-bottom: 0.5rem;
|
| 64 |
-
color: #2874a6;
|
| 65 |
-
}
|
| 66 |
-
.container {
|
| 67 |
-
margin: 0 auto;
|
| 68 |
-
padding: 2rem;
|
| 69 |
-
}
|
| 70 |
-
.gr-box {
|
| 71 |
-
border-radius: 8px;
|
| 72 |
-
box-shadow: 0 1px 3px rgba(0,0,0,0.12), 0 1px 2px rgba(0,0,0,0.24);
|
| 73 |
-
padding: 1rem;
|
| 74 |
-
margin-bottom: 1rem;
|
| 75 |
-
background-color: #f9f9f9;
|
| 76 |
-
}
|
| 77 |
-
.footer {
|
| 78 |
-
text-align: center;
|
| 79 |
-
font-size: 0.8rem;
|
| 80 |
-
color: #666;
|
| 81 |
-
margin-top: 2rem;
|
| 82 |
-
}
|
| 83 |
-
"""
|
| 84 |
|
|
|
|
| 85 |
class Config:
|
| 86 |
-
"""
|
| 87 |
-
Configuration for vector store and RAG system.
|
| 88 |
-
|
| 89 |
-
This class centralizes all configuration parameters for the application,
|
| 90 |
-
making it easier to modify settings and ensure consistency.
|
| 91 |
-
|
| 92 |
-
Attributes:
|
| 93 |
-
local_dir (str): Directory for ChromaDB persistence
|
| 94 |
-
embedding_model (str): Name of the embedding model to use
|
| 95 |
-
collection_name (str): Name of the ChromaDB collection
|
| 96 |
-
default_top_k (int): Default number of results to return
|
| 97 |
-
openai_model (str): Default OpenAI model to use
|
| 98 |
-
gemini_model (str): Default Gemini model to use
|
| 99 |
-
temperature (float): Temperature setting for LLM generation
|
| 100 |
-
max_tokens (int): Maximum tokens for LLM response
|
| 101 |
-
system_name (str): Name of the system for UI
|
| 102 |
-
context_limit (int): Maximum characters to include in context
|
| 103 |
-
"""
|
| 104 |
-
|
| 105 |
def __init__(self,
|
| 106 |
-
local_dir: str = "
|
| 107 |
embedding_model: str = "all-MiniLM-L6-v2",
|
| 108 |
-
collection_name: str = "markdown_docs"
|
| 109 |
-
default_top_k: int = 8, # Increased from 5 to 8 for more context
|
| 110 |
-
openai_model: str = "gpt-4o-mini",
|
| 111 |
-
gemini_model: str = "gemini-1.5-flash",
|
| 112 |
-
temperature: float = 0.3,
|
| 113 |
-
max_tokens: int = 2000, # Increased from 1000 to 2000 for more comprehensive responses
|
| 114 |
-
system_name: str = "Document Knowledge Assistant",
|
| 115 |
-
context_limit: int = 16000): # Increased context limit for more comprehensive context
|
| 116 |
self.local_dir = local_dir
|
| 117 |
self.embedding_model = embedding_model
|
| 118 |
self.collection_name = collection_name
|
| 119 |
-
self.default_top_k = default_top_k
|
| 120 |
-
self.openai_model = openai_model
|
| 121 |
-
self.gemini_model = gemini_model
|
| 122 |
-
self.temperature = temperature
|
| 123 |
-
self.max_tokens = max_tokens
|
| 124 |
-
self.system_name = system_name
|
| 125 |
-
self.context_limit = context_limit
|
| 126 |
-
|
| 127 |
-
# Create local directory if it doesn't exist
|
| 128 |
-
os.makedirs(local_dir, exist_ok=True)
|
| 129 |
-
|
| 130 |
-
logger.info(f"Initialized configuration: {self.__dict__}")
|
| 131 |
-
|
| 132 |
-
def to_dict(self) -> Dict[str, Any]:
|
| 133 |
-
"""Convert configuration to dictionary for serialization"""
|
| 134 |
-
return self.__dict__
|
| 135 |
-
|
| 136 |
-
@classmethod
|
| 137 |
-
def from_file(cls, config_path: str) -> 'Config':
|
| 138 |
-
"""Load configuration from JSON file"""
|
| 139 |
-
try:
|
| 140 |
-
with open(config_path, 'r') as f:
|
| 141 |
-
config_dict = json.load(f)
|
| 142 |
-
logger.info(f"Loaded configuration from {config_path}")
|
| 143 |
-
return cls(**config_dict)
|
| 144 |
-
except Exception as e:
|
| 145 |
-
logger.error(f"Failed to load configuration from {config_path}: {e}")
|
| 146 |
-
logger.info("Using default configuration")
|
| 147 |
-
return cls()
|
| 148 |
-
|
| 149 |
-
def save_to_file(self, config_path: str) -> bool:
|
| 150 |
-
"""Save configuration to JSON file"""
|
| 151 |
-
try:
|
| 152 |
-
with open(config_path, 'w') as f:
|
| 153 |
-
json.dump(self.to_dict(), f, indent=2)
|
| 154 |
-
logger.info(f"Saved configuration to {config_path}")
|
| 155 |
-
return True
|
| 156 |
-
except Exception as e:
|
| 157 |
-
logger.error(f"Failed to save configuration to {config_path}: {e}")
|
| 158 |
-
return False
|
| 159 |
|
|
|
|
| 160 |
class EmbeddingEngine:
|
| 161 |
-
"""
|
| 162 |
-
Handle embeddings with a lightweight model.
|
| 163 |
-
|
| 164 |
-
This class manages the embedding model used to convert text to vector
|
| 165 |
-
representations for semantic search.
|
| 166 |
-
|
| 167 |
-
Attributes:
|
| 168 |
-
model (SentenceTransformer): The loaded embedding model
|
| 169 |
-
model_name (str): Name of the successfully loaded model
|
| 170 |
-
vector_size (int): Dimension of the embedding vectors
|
| 171 |
-
device (str): Device used for inference ('cuda' or 'cpu')
|
| 172 |
-
"""
|
| 173 |
|
| 174 |
def __init__(self, model_name="all-MiniLM-L6-v2"):
|
| 175 |
-
"""
|
| 176 |
-
Initialize the embedding engine with the specified model.
|
| 177 |
-
|
| 178 |
-
Args:
|
| 179 |
-
model_name (str): Name of the embedding model to load
|
| 180 |
-
|
| 181 |
-
Raises:
|
| 182 |
-
SystemExit: If no embedding model could be loaded
|
| 183 |
-
"""
|
| 184 |
# Use GPU if available
|
| 185 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 186 |
-
logger.info(f"Using device
|
| 187 |
|
| 188 |
# Try multiple model options in order of preference
|
| 189 |
model_options = [
|
| 190 |
model_name,
|
| 191 |
-
"all-MiniLM-L6-v2",
|
| 192 |
-
"paraphrase-MiniLM-L3-v2",
|
| 193 |
-
"all-mpnet-base-v2"
|
| 194 |
]
|
| 195 |
|
| 196 |
self.model = None
|
|
@@ -198,99 +53,47 @@ class EmbeddingEngine:
|
|
| 198 |
# Try each model in order until one works
|
| 199 |
for model_option in model_options:
|
| 200 |
try:
|
| 201 |
-
logger.info(f"Attempting to load
|
| 202 |
self.model = SentenceTransformer(model_option)
|
| 203 |
|
| 204 |
# Move model to device
|
| 205 |
self.model.to(self.device)
|
| 206 |
|
| 207 |
-
logger.info(f"Successfully loaded
|
| 208 |
self.model_name = model_option
|
| 209 |
self.vector_size = self.model.get_sentence_embedding_dimension()
|
| 210 |
-
logger.info(f"Embedding vector size: {self.vector_size}")
|
| 211 |
break
|
| 212 |
|
| 213 |
except Exception as e:
|
| 214 |
-
logger.warning(f"Failed to load
|
| 215 |
|
| 216 |
if self.model is None:
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
raise SystemExit(error_msg)
|
| 220 |
-
|
| 221 |
-
def embed(self, texts: List[str]) -> np.ndarray:
|
| 222 |
-
"""
|
| 223 |
-
Generate embeddings for a list of texts.
|
| 224 |
-
|
| 225 |
-
Args:
|
| 226 |
-
texts (List[str]): List of texts to embed
|
| 227 |
-
|
| 228 |
-
Returns:
|
| 229 |
-
np.ndarray: Array of embeddings
|
| 230 |
-
|
| 231 |
-
Raises:
|
| 232 |
-
ValueError: If the input is invalid
|
| 233 |
-
RuntimeError: If embedding fails
|
| 234 |
-
"""
|
| 235 |
-
if not texts:
|
| 236 |
-
raise ValueError("Cannot embed empty list of texts")
|
| 237 |
-
|
| 238 |
-
try:
|
| 239 |
-
embeddings = self.model.encode(texts, convert_to_numpy=True)
|
| 240 |
-
return embeddings
|
| 241 |
-
except Exception as e:
|
| 242 |
-
logger.error(f"Error generating embeddings: {e}")
|
| 243 |
-
raise RuntimeError(f"Failed to generate embeddings: {e}")
|
| 244 |
|
| 245 |
class VectorStoreManager:
|
| 246 |
-
"""
|
| 247 |
-
Manage Chroma vector store operations - upload, query, etc.
|
| 248 |
-
|
| 249 |
-
This class provides an interface to the ChromaDB vector database,
|
| 250 |
-
handling document storage, retrieval, and management.
|
| 251 |
-
|
| 252 |
-
Attributes:
|
| 253 |
-
config (Config): Configuration parameters
|
| 254 |
-
client (chromadb.PersistentClient): ChromaDB client
|
| 255 |
-
collection (chromadb.Collection): The active ChromaDB collection
|
| 256 |
-
embedding_engine (EmbeddingEngine): Engine for generating embeddings
|
| 257 |
-
"""
|
| 258 |
|
| 259 |
def __init__(self, config: Config):
|
| 260 |
-
"""
|
| 261 |
-
Initialize the vector store manager.
|
| 262 |
-
|
| 263 |
-
Args:
|
| 264 |
-
config (Config): Configuration parameters
|
| 265 |
-
|
| 266 |
-
Raises:
|
| 267 |
-
SystemExit: If the vector store cannot be initialized
|
| 268 |
-
"""
|
| 269 |
self.config = config
|
| 270 |
|
| 271 |
# Initialize Chroma client (local persistence)
|
| 272 |
logger.info(f"Initializing Chroma at {config.local_dir}")
|
| 273 |
-
|
| 274 |
-
self.client = chromadb.PersistentClient(path=config.local_dir)
|
| 275 |
-
logger.info("ChromaDB client initialized successfully")
|
| 276 |
-
except Exception as e:
|
| 277 |
-
error_msg = f"Failed to initialize ChromaDB client: {e}"
|
| 278 |
-
logger.critical(error_msg)
|
| 279 |
-
raise SystemExit(error_msg)
|
| 280 |
|
| 281 |
# Get or create collection
|
| 282 |
try:
|
| 283 |
# Initialize embedding model
|
| 284 |
logger.info("Loading embedding model...")
|
| 285 |
self.embedding_engine = EmbeddingEngine(config.embedding_model)
|
| 286 |
-
logger.info(f"Using
|
| 287 |
|
| 288 |
# Create embedding function
|
| 289 |
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
|
| 290 |
model_name=self.embedding_engine.model_name
|
| 291 |
)
|
| 292 |
|
| 293 |
-
# Try to get existing collection
|
| 294 |
try:
|
| 295 |
self.collection = self.client.get_collection(
|
| 296 |
name=config.collection_name,
|
|
@@ -298,7 +101,7 @@ class VectorStoreManager:
|
|
| 298 |
)
|
| 299 |
logger.info(f"Using existing collection: {config.collection_name}")
|
| 300 |
except Exception as e:
|
| 301 |
-
logger.
|
| 302 |
# Attempt to get a list of available collections
|
| 303 |
collections = self.client.list_collections()
|
| 304 |
if collections:
|
|
@@ -319,28 +122,14 @@ class VectorStoreManager:
|
|
| 319 |
logger.info(f"Created new collection: {config.collection_name}")
|
| 320 |
|
| 321 |
except Exception as e:
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
raise SystemExit(error_msg)
|
| 325 |
|
| 326 |
def query(self, query_text: str, n_results: int = 5) -> List[Dict]:
|
| 327 |
"""
|
| 328 |
-
Query the vector store with a text query
|
| 329 |
-
|
| 330 |
-
Args:
|
| 331 |
-
query_text (str): The query text
|
| 332 |
-
n_results (int): Number of results to return
|
| 333 |
-
|
| 334 |
-
Returns:
|
| 335 |
-
List[Dict]: List of results with document text, metadata, and similarity score
|
| 336 |
"""
|
| 337 |
-
if not query_text.strip():
|
| 338 |
-
logger.warning("Empty query received")
|
| 339 |
-
return []
|
| 340 |
-
|
| 341 |
try:
|
| 342 |
-
logger.info(f"Querying vector store with: '{query_text[:50]}...' (top {n_results})")
|
| 343 |
-
|
| 344 |
# Query the collection
|
| 345 |
search_results = self.collection.query(
|
| 346 |
query_texts=[query_text],
|
|
@@ -354,106 +143,26 @@ class VectorStoreManager:
|
|
| 354 |
for i in range(len(search_results["documents"][0])):
|
| 355 |
results.append({
|
| 356 |
'document': search_results["documents"][0][i],
|
| 357 |
-
'metadata': search_results["metadatas"][0][i]
|
| 358 |
-
'score': 1.0 - search_results["distances"][0][i]
|
| 359 |
-
'distance': search_results["distances"][0][i]
|
| 360 |
})
|
| 361 |
-
|
| 362 |
-
logger.info(f"Found {len(results)} results for query")
|
| 363 |
-
else:
|
| 364 |
-
logger.info("No results found for query")
|
| 365 |
|
| 366 |
return results
|
| 367 |
except Exception as e:
|
| 368 |
logger.error(f"Error querying collection: {e}")
|
| 369 |
-
logger.debug(traceback.format_exc())
|
| 370 |
return []
|
| 371 |
|
| 372 |
-
def add_document(self,
|
| 373 |
-
document: str,
|
| 374 |
-
doc_id: str,
|
| 375 |
-
metadata: Dict[str, Any]) -> bool:
|
| 376 |
-
"""
|
| 377 |
-
Add a document to the vector store.
|
| 378 |
-
|
| 379 |
-
Args:
|
| 380 |
-
document (str): The document text
|
| 381 |
-
doc_id (str): Unique identifier for the document
|
| 382 |
-
metadata (Dict[str, Any]): Metadata about the document
|
| 383 |
-
|
| 384 |
-
Returns:
|
| 385 |
-
bool: True if successful, False otherwise
|
| 386 |
-
"""
|
| 387 |
-
try:
|
| 388 |
-
logger.info(f"Adding document '{doc_id}' to vector store")
|
| 389 |
-
|
| 390 |
-
# Add the document to the collection
|
| 391 |
-
self.collection.add(
|
| 392 |
-
documents=[document],
|
| 393 |
-
ids=[doc_id],
|
| 394 |
-
metadatas=[metadata]
|
| 395 |
-
)
|
| 396 |
-
|
| 397 |
-
logger.info(f"Successfully added document '{doc_id}'")
|
| 398 |
-
return True
|
| 399 |
-
except Exception as e:
|
| 400 |
-
logger.error(f"Error adding document to collection: {e}")
|
| 401 |
-
return False
|
| 402 |
-
|
| 403 |
-
def delete_document(self, doc_id: str) -> bool:
|
| 404 |
-
"""
|
| 405 |
-
Delete a document from the vector store.
|
| 406 |
-
|
| 407 |
-
Args:
|
| 408 |
-
doc_id (str): ID of the document to delete
|
| 409 |
-
|
| 410 |
-
Returns:
|
| 411 |
-
bool: True if successful, False otherwise
|
| 412 |
-
"""
|
| 413 |
-
try:
|
| 414 |
-
logger.info(f"Deleting document '{doc_id}' from vector store")
|
| 415 |
-
self.collection.delete(ids=[doc_id])
|
| 416 |
-
logger.info(f"Successfully deleted document '{doc_id}'")
|
| 417 |
-
return True
|
| 418 |
-
except Exception as e:
|
| 419 |
-
logger.error(f"Error deleting document from collection: {e}")
|
| 420 |
-
return False
|
| 421 |
-
|
| 422 |
def get_statistics(self) -> Dict[str, Any]:
|
| 423 |
-
"""
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
Returns:
|
| 427 |
-
Dict[str, Any]: Statistics about the vector store
|
| 428 |
-
"""
|
| 429 |
-
stats = {
|
| 430 |
-
'collection_name': self.config.collection_name,
|
| 431 |
-
'embedding_model': self.embedding_engine.model_name,
|
| 432 |
-
'embedding_dimensions': self.embedding_engine.vector_size,
|
| 433 |
-
'device': self.embedding_engine.device
|
| 434 |
-
}
|
| 435 |
|
| 436 |
try:
|
| 437 |
# Get collection count
|
| 438 |
-
|
| 439 |
-
stats['total_documents'] =
|
| 440 |
|
| 441 |
-
#
|
| 442 |
-
|
| 443 |
-
try:
|
| 444 |
-
# Get a sample of document metadata
|
| 445 |
-
sample_results = self.collection.get(limit=min(collection_count, 100))
|
| 446 |
-
if sample_results and 'metadatas' in sample_results and sample_results['metadatas']:
|
| 447 |
-
# Count unique files if filename exists in metadata
|
| 448 |
-
filenames = set()
|
| 449 |
-
for metadata in sample_results['metadatas']:
|
| 450 |
-
if 'filename' in metadata:
|
| 451 |
-
filenames.add(metadata['filename'])
|
| 452 |
-
stats['unique_files'] = len(filenames)
|
| 453 |
-
except Exception as e:
|
| 454 |
-
logger.warning(f"Error getting metadata statistics: {e}")
|
| 455 |
-
|
| 456 |
-
logger.info(f"Vector store statistics: {stats}")
|
| 457 |
except Exception as e:
|
| 458 |
logger.error(f"Error getting statistics: {e}")
|
| 459 |
stats['error'] = str(e)
|
|
@@ -461,635 +170,274 @@ class VectorStoreManager:
|
|
| 461 |
return stats
|
| 462 |
|
| 463 |
class RAGSystem:
|
| 464 |
-
"""
|
| 465 |
-
Retrieval-Augmented Generation with multiple LLM providers.
|
| 466 |
-
|
| 467 |
-
This class handles the RAG workflow: retrieval of relevant documents,
|
| 468 |
-
formatting context, and generating responses with different LLM providers.
|
| 469 |
-
|
| 470 |
-
Attributes:
|
| 471 |
-
vector_store (VectorStoreManager): Manager for vector store operations
|
| 472 |
-
openai_client (Optional[OpenAI]): OpenAI client
|
| 473 |
-
gemini_configured (bool): Whether Gemini API is configured
|
| 474 |
-
config (Config): Configuration parameters
|
| 475 |
-
"""
|
| 476 |
|
| 477 |
-
def __init__(self, vector_store: VectorStoreManager
|
| 478 |
-
"""
|
| 479 |
-
Initialize the RAG system.
|
| 480 |
-
|
| 481 |
-
Args:
|
| 482 |
-
vector_store (VectorStoreManager): Vector store manager
|
| 483 |
-
config (Config): Configuration parameters
|
| 484 |
-
"""
|
| 485 |
self.vector_store = vector_store
|
| 486 |
-
self.config = config
|
| 487 |
self.openai_client = None
|
| 488 |
self.gemini_configured = False
|
| 489 |
-
|
| 490 |
-
logger.info("Initialized RAG system")
|
| 491 |
|
| 492 |
-
def setup_openai(self, api_key: str)
|
| 493 |
-
"""
|
| 494 |
-
Set up OpenAI client with API key.
|
| 495 |
-
|
| 496 |
-
Args:
|
| 497 |
-
api_key (str): OpenAI API key
|
| 498 |
-
|
| 499 |
-
Returns:
|
| 500 |
-
bool: True if successful, False otherwise
|
| 501 |
-
"""
|
| 502 |
-
if not api_key.strip():
|
| 503 |
-
logger.warning("Empty OpenAI API key provided")
|
| 504 |
-
return False
|
| 505 |
-
|
| 506 |
try:
|
| 507 |
-
logger.info("Setting up OpenAI client")
|
| 508 |
self.openai_client = OpenAI(api_key=api_key)
|
| 509 |
-
# Test the API key with a simple request
|
| 510 |
-
response = self.openai_client.chat.completions.create(
|
| 511 |
-
model=self.config.openai_model,
|
| 512 |
-
messages=[
|
| 513 |
-
{"role": "system", "content": "You are a helpful assistant."},
|
| 514 |
-
{"role": "user", "content": "Test connection"}
|
| 515 |
-
],
|
| 516 |
-
max_tokens=10
|
| 517 |
-
)
|
| 518 |
-
logger.info("OpenAI client configured successfully")
|
| 519 |
return True
|
| 520 |
except Exception as e:
|
| 521 |
logger.error(f"Error initializing OpenAI client: {e}")
|
| 522 |
-
self.openai_client = None
|
| 523 |
return False
|
| 524 |
|
| 525 |
-
def setup_gemini(self, api_key: str)
|
| 526 |
-
"""
|
| 527 |
-
Set up Gemini with API key.
|
| 528 |
-
|
| 529 |
-
Args:
|
| 530 |
-
api_key (str): Google AI API key
|
| 531 |
-
|
| 532 |
-
Returns:
|
| 533 |
-
bool: True if successful, False otherwise
|
| 534 |
-
"""
|
| 535 |
-
if not api_key.strip():
|
| 536 |
-
logger.warning("Empty Gemini API key provided")
|
| 537 |
-
return False
|
| 538 |
-
|
| 539 |
try:
|
| 540 |
-
logger.info("Setting up Gemini client")
|
| 541 |
genai.configure(api_key=api_key)
|
| 542 |
-
|
| 543 |
-
# Test the API key with a simple request
|
| 544 |
-
model = genai.GenerativeModel(self.config.gemini_model)
|
| 545 |
-
response = model.generate_content("Test connection")
|
| 546 |
-
|
| 547 |
self.gemini_configured = True
|
| 548 |
-
logger.info("Gemini client configured successfully")
|
| 549 |
return True
|
| 550 |
except Exception as e:
|
| 551 |
logger.error(f"Error configuring Gemini: {e}")
|
| 552 |
-
self.gemini_configured = False
|
| 553 |
return False
|
| 554 |
|
| 555 |
def format_context(self, documents: List[Dict]) -> str:
|
| 556 |
-
"""
|
| 557 |
-
Format retrieved documents into context for the LLM.
|
| 558 |
-
|
| 559 |
-
Args:
|
| 560 |
-
documents (List[Dict]): List of retrieved documents
|
| 561 |
-
|
| 562 |
-
Returns:
|
| 563 |
-
str: Formatted context for the LLM
|
| 564 |
-
"""
|
| 565 |
if not documents:
|
| 566 |
-
logger.warning("No documents provided for context formatting")
|
| 567 |
return "No relevant documents found."
|
| 568 |
|
| 569 |
-
logger.info(f"Formatting {len(documents)} documents for context")
|
| 570 |
context_parts = []
|
| 571 |
-
|
| 572 |
for i, doc in enumerate(documents):
|
| 573 |
metadata = doc['metadata']
|
| 574 |
-
# Extract document metadata in a robust way
|
| 575 |
title = metadata.get('title', metadata.get('filename', 'Unknown document'))
|
| 576 |
|
| 577 |
-
#
|
| 578 |
-
header = f"Document {i+1} - {title}"
|
| 579 |
-
|
| 580 |
-
# For readability, limit length of context document (using config value)
|
| 581 |
doc_text = doc['document']
|
| 582 |
-
if len(doc_text) >
|
| 583 |
-
|
| 584 |
-
max_length = self.config.context_limit // len(documents)
|
| 585 |
-
doc_text = doc_text[:max_length] + "... [Document truncated for brevity]"
|
| 586 |
|
| 587 |
-
context_parts.append(f"{
|
| 588 |
|
| 589 |
-
|
| 590 |
-
logger.info(f"Created context with {len(full_context)} characters")
|
| 591 |
-
|
| 592 |
-
return full_context
|
| 593 |
|
| 594 |
def generate_response_openai(self, query: str, context: str) -> str:
|
| 595 |
-
"""
|
| 596 |
-
Generate a response using OpenAI model with context.
|
| 597 |
-
|
| 598 |
-
Args:
|
| 599 |
-
query (str): User query
|
| 600 |
-
context (str): Formatted document context
|
| 601 |
-
|
| 602 |
-
Returns:
|
| 603 |
-
str: Generated response
|
| 604 |
-
"""
|
| 605 |
if not self.openai_client:
|
| 606 |
-
|
| 607 |
-
return "Please configure an OpenAI API key to use this feature. Enter your API key in the field and click 'Save API Key'."
|
| 608 |
|
| 609 |
-
# Improved system prompt for better, more comprehensive responses
|
| 610 |
system_prompt = """
|
| 611 |
-
You are
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
1. USE ONLY the information contained in the provided context documents to form your answer. If the context doesn't contain enough information to provide a complete answer, acknowledge this limitation clearly.
|
| 616 |
-
|
| 617 |
-
2. Always provide well-structured, detailed responses between 300-500 words that thoroughly address the user's question.
|
| 618 |
-
|
| 619 |
-
3. Format your response with clear headings, bullet points, or numbered lists when appropriate to enhance readability.
|
| 620 |
-
|
| 621 |
-
4. Cite your sources by referring to the document numbers (e.g., "According to Document 1...") to support your claims.
|
| 622 |
-
|
| 623 |
-
5. Use a friendly, conversational, and supportive tone that makes complex information accessible.
|
| 624 |
-
|
| 625 |
-
6. If different documents offer conflicting information, acknowledge these differences and present both perspectives without bias.
|
| 626 |
-
|
| 627 |
-
7. When appropriate, organize information into logical categories or chronological order to improve clarity.
|
| 628 |
-
|
| 629 |
-
8. Use examples from the documents to illustrate key points when available.
|
| 630 |
-
|
| 631 |
-
9. Conclude with a brief summary of the main points if the answer is complex.
|
| 632 |
-
|
| 633 |
-
10. Remember to stay focused on the user's specific question while providing sufficient context for complete understanding.
|
| 634 |
"""
|
| 635 |
|
| 636 |
try:
|
| 637 |
-
logger.info(f"Generating response with OpenAI ({self.config.openai_model})")
|
| 638 |
-
|
| 639 |
-
start_time = datetime.now()
|
| 640 |
response = self.openai_client.chat.completions.create(
|
| 641 |
-
model=
|
| 642 |
messages=[
|
| 643 |
{"role": "system", "content": system_prompt},
|
| 644 |
{"role": "user", "content": f"Context:\n{context}\n\nQuestion: {query}"}
|
| 645 |
],
|
| 646 |
-
temperature=
|
| 647 |
-
max_tokens=
|
| 648 |
)
|
| 649 |
-
|
| 650 |
-
generation_time = (datetime.now() - start_time).total_seconds()
|
| 651 |
-
response_text = response.choices[0].message.content
|
| 652 |
-
|
| 653 |
-
logger.info(f"Generated response with OpenAI in {generation_time:.2f} seconds")
|
| 654 |
-
return response_text
|
| 655 |
except Exception as e:
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
return f"I encountered an error while generating your response. Please try again or check your API key. Error details: {str(e)}"
|
| 659 |
|
| 660 |
def generate_response_gemini(self, query: str, context: str) -> str:
|
| 661 |
-
"""
|
| 662 |
-
Generate a response using Gemini with context.
|
| 663 |
-
|
| 664 |
-
Args:
|
| 665 |
-
query (str): User query
|
| 666 |
-
context (str): Formatted document context
|
| 667 |
-
|
| 668 |
-
Returns:
|
| 669 |
-
str: Generated response
|
| 670 |
-
"""
|
| 671 |
if not self.gemini_configured:
|
| 672 |
-
|
| 673 |
-
return "Please configure a Google AI API key to use this feature. Enter your API key in the field and click 'Save API Key'."
|
| 674 |
|
| 675 |
-
# Improved Gemini prompt for more comprehensive and user-friendly responses
|
| 676 |
prompt = f"""
|
| 677 |
-
You are a knowledgeable and friendly research assistant who excels at providing clear, comprehensive, and well-structured responses. Your goal is to help users understand complex information from documents in an accessible way.
|
| 678 |
-
|
| 679 |
-
**Guidelines for Your Response:**
|
| 680 |
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 691 |
{context}
|
| 692 |
|
| 693 |
-
|
| 694 |
-
{query}
|
| 695 |
-
|
| 696 |
-
**Your Response:**
|
| 697 |
"""
|
| 698 |
-
|
| 699 |
try:
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
model = genai.GenerativeModel(self.config.gemini_model)
|
| 704 |
-
|
| 705 |
-
generation_config = {
|
| 706 |
-
"temperature": self.config.temperature,
|
| 707 |
-
"max_output_tokens": self.config.max_tokens,
|
| 708 |
-
"top_p": 0.9,
|
| 709 |
-
"top_k": 40
|
| 710 |
-
}
|
| 711 |
-
|
| 712 |
-
response = model.generate_content(
|
| 713 |
-
prompt,
|
| 714 |
-
generation_config=generation_config
|
| 715 |
-
)
|
| 716 |
-
|
| 717 |
-
generation_time = (datetime.now() - start_time).total_seconds()
|
| 718 |
-
response_text = response.text
|
| 719 |
-
|
| 720 |
-
logger.info(f"Generated response with Gemini in {generation_time:.2f} seconds")
|
| 721 |
-
return response_text
|
| 722 |
except Exception as e:
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
return f"I encountered an error while generating your response. Please try again or check your API key. Error details: {str(e)}"
|
| 726 |
|
| 727 |
-
def query_and_generate(self,
|
| 728 |
-
|
| 729 |
-
n_results: int = 5,
|
| 730 |
-
model: str = "openai") -> Tuple[str, str]:
|
| 731 |
-
"""
|
| 732 |
-
Retrieve relevant documents and generate a response using the specified model.
|
| 733 |
-
|
| 734 |
-
Args:
|
| 735 |
-
query (str): User query
|
| 736 |
-
n_results (int): Number of documents to retrieve
|
| 737 |
-
model (str): Model provider to use ('openai' or 'gemini')
|
| 738 |
-
|
| 739 |
-
Returns:
|
| 740 |
-
Tuple[str, str]: (Generated response, Search results)
|
| 741 |
-
"""
|
| 742 |
-
if not query.strip():
|
| 743 |
-
logger.warning("Empty query received")
|
| 744 |
-
return "Please enter a question to get a response.", "No search performed."
|
| 745 |
-
|
| 746 |
-
logger.info(f"Processing query: '{query[:50]}...' with {model} model")
|
| 747 |
-
|
| 748 |
# Query vector store
|
| 749 |
documents = self.vector_store.query(query, n_results=n_results)
|
| 750 |
|
| 751 |
-
# Format search results (for logs and hidden UI component)
|
| 752 |
-
# We'll format this in a way that's more useful for reference but not shown in UI
|
| 753 |
-
formatted_results = []
|
| 754 |
-
for i, res in enumerate(documents):
|
| 755 |
-
metadata = res['metadata']
|
| 756 |
-
title = metadata.get('title', metadata.get('filename', 'Unknown'))
|
| 757 |
-
score = res['score']
|
| 758 |
-
|
| 759 |
-
# Only include a very brief preview for reference
|
| 760 |
-
preview = res['document'][:100] + '...' if len(res['document']) > 100 else res['document']
|
| 761 |
-
formatted_results.append(f"Document {i+1}: {title} (Relevance: {score:.2f})")
|
| 762 |
-
|
| 763 |
-
search_output_text = "\n".join(formatted_results) if formatted_results else "No relevant documents found."
|
| 764 |
-
|
| 765 |
if not documents:
|
| 766 |
-
|
| 767 |
-
return "I couldn't find relevant information in the knowledge base to answer your question. Could you try rephrasing your question or ask about a different topic?", search_output_text
|
| 768 |
|
| 769 |
# Format context
|
| 770 |
context = self.format_context(documents)
|
| 771 |
|
| 772 |
# Generate response with the appropriate model
|
| 773 |
if model == "openai":
|
| 774 |
-
|
| 775 |
elif model == "gemini":
|
| 776 |
-
|
| 777 |
else:
|
| 778 |
-
|
| 779 |
-
logger.error(error_msg)
|
| 780 |
-
return error_msg, search_output_text
|
| 781 |
-
|
| 782 |
-
return response, search_output_text
|
| 783 |
-
|
| 784 |
-
def get_db_stats(vector_store: VectorStoreManager) -> str:
|
| 785 |
-
"""
|
| 786 |
-
Function to get vector store statistics.
|
| 787 |
-
|
| 788 |
-
Args:
|
| 789 |
-
vector_store (VectorStoreManager): Vector store manager
|
| 790 |
-
|
| 791 |
-
Returns:
|
| 792 |
-
str: Formatted statistics string
|
| 793 |
-
"""
|
| 794 |
-
try:
|
| 795 |
-
stats = vector_store.get_statistics()
|
| 796 |
-
total_docs = stats.get('total_documents', 0)
|
| 797 |
-
|
| 798 |
-
stats_text = f"Documents in knowledge base: {total_docs}"
|
| 799 |
-
return stats_text
|
| 800 |
-
except Exception as e:
|
| 801 |
-
logger.error(f"Error getting statistics: {e}")
|
| 802 |
-
return "Error getting database statistics"
|
| 803 |
-
|
| 804 |
-
# Helper function for loading documents (can be expanded in future versions)
|
| 805 |
-
def load_document(file_path: str, chunk_size: int = 2000, chunk_overlap: int = 200) -> bool:
|
| 806 |
-
"""
|
| 807 |
-
Load a document into the vector store.
|
| 808 |
-
|
| 809 |
-
Args:
|
| 810 |
-
file_path (str): Path to the document
|
| 811 |
-
chunk_size (int): Size of chunks to split the document into
|
| 812 |
-
chunk_overlap (int): Overlap between chunks
|
| 813 |
-
|
| 814 |
-
Returns:
|
| 815 |
-
bool: True if successful, False otherwise
|
| 816 |
-
"""
|
| 817 |
-
try:
|
| 818 |
-
try:
|
| 819 |
-
logger.info(f"Loading document: {file_path}")
|
| 820 |
-
|
| 821 |
-
# Initialize components
|
| 822 |
-
config = Config()
|
| 823 |
-
vector_store = VectorStoreManager(config)
|
| 824 |
-
|
| 825 |
-
# Read the file with different encodings if needed
|
| 826 |
-
content = None
|
| 827 |
-
encodings = ['utf-8', 'latin-1', 'cp1252']
|
| 828 |
-
|
| 829 |
-
for encoding in encodings:
|
| 830 |
-
try:
|
| 831 |
-
with open(file_path, 'r', encoding=encoding) as f:
|
| 832 |
-
content = f.read()
|
| 833 |
-
logger.info(f"Successfully read file with {encoding} encoding")
|
| 834 |
-
break
|
| 835 |
-
except UnicodeDecodeError:
|
| 836 |
-
logger.warning(f"Failed to read with {encoding} encoding, trying next...")
|
| 837 |
-
|
| 838 |
-
if content is None:
|
| 839 |
-
logger.error(f"Failed to read file with any encoding: {file_path}")
|
| 840 |
-
return False
|
| 841 |
-
|
| 842 |
-
# Extract metadata
|
| 843 |
-
file_name = os.path.basename(file_path)
|
| 844 |
-
file_ext = os.path.splitext(file_name)[1].lower()
|
| 845 |
-
file_size = os.path.getsize(file_path)
|
| 846 |
-
file_mtime = os.path.getmtime(file_path)
|
| 847 |
-
|
| 848 |
-
# Try to extract title from content for better reference
|
| 849 |
-
title = file_name
|
| 850 |
-
try:
|
| 851 |
-
# Simple heuristic to find a title (first non-empty line)
|
| 852 |
-
lines = content.split('\n')
|
| 853 |
-
for line in lines:
|
| 854 |
-
line = line.strip()
|
| 855 |
-
if line and len(line) < 100: # Reasonable title length
|
| 856 |
-
title = line
|
| 857 |
-
break
|
| 858 |
-
except:
|
| 859 |
-
pass
|
| 860 |
-
|
| 861 |
-
# Create metadata
|
| 862 |
-
metadata = {
|
| 863 |
-
'filename': file_name,
|
| 864 |
-
'title': title,
|
| 865 |
-
'path': file_path,
|
| 866 |
-
'extension': file_ext,
|
| 867 |
-
'size': file_size,
|
| 868 |
-
'modified': datetime.fromtimestamp(file_mtime).isoformat(),
|
| 869 |
-
'created_at': datetime.now().isoformat()
|
| 870 |
-
}
|
| 871 |
-
|
| 872 |
-
# Generate a unique ID for the document
|
| 873 |
-
doc_id = f"{file_name}_{hash(content)}"
|
| 874 |
-
|
| 875 |
-
# Add to vector store
|
| 876 |
-
success = vector_store.add_document(content, doc_id, metadata)
|
| 877 |
-
|
| 878 |
-
logger.info(f"Document loaded successfully: {file_path}" if success else f"Failed to load document: {file_path}")
|
| 879 |
-
return success
|
| 880 |
-
|
| 881 |
-
except Exception as e:
|
| 882 |
-
logger.error(f"Error loading document {file_path}: {e}")
|
| 883 |
-
logger.error(traceback.format_exc())
|
| 884 |
-
return False
|
| 885 |
|
|
|
|
| 886 |
def main():
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
|
|
|
|
|
|
|
| 890 |
|
| 891 |
try:
|
| 892 |
-
# Try to load configuration from file, or use defaults
|
| 893 |
-
if os.path.exists(CONFIG_FILE_PATH):
|
| 894 |
-
config = Config.from_file(CONFIG_FILE_PATH)
|
| 895 |
-
else:
|
| 896 |
-
config = Config(
|
| 897 |
-
local_dir="./chroma_db", # Store Chroma files in dedicated directory
|
| 898 |
-
collection_name="markdown_docs"
|
| 899 |
-
)
|
| 900 |
-
# Save default configuration
|
| 901 |
-
config.save_to_file(CONFIG_FILE_PATH)
|
| 902 |
-
|
| 903 |
-
print(f"Starting Document Knowledge Assistant v{VERSION}")
|
| 904 |
-
print(f"Log file: {log_file}")
|
| 905 |
-
|
| 906 |
# Initialize vector store manager with existing collection
|
| 907 |
vector_store = VectorStoreManager(config)
|
| 908 |
|
| 909 |
# Initialize RAG system without API keys initially
|
| 910 |
-
rag_system = RAGSystem(vector_store
|
| 911 |
|
| 912 |
-
# Create the Gradio interface
|
| 913 |
-
with gr.Blocks(title="Document
|
| 914 |
-
gr.Markdown(
|
| 915 |
-
gr.Markdown("Ask questions about your documents and get comprehensive AI-powered answers")
|
| 916 |
|
| 917 |
-
# Main layout
|
| 918 |
with gr.Row():
|
| 919 |
-
# Left column for asking questions
|
| 920 |
-
with gr.Column(scale=3):
|
| 921 |
-
with gr.Box():
|
| 922 |
-
gr.Markdown("### Ask Your Question")
|
| 923 |
-
query_input = gr.Textbox(
|
| 924 |
-
label="",
|
| 925 |
-
placeholder="What would you like to know about your documents?",
|
| 926 |
-
lines=3
|
| 927 |
-
)
|
| 928 |
-
|
| 929 |
-
with gr.Row():
|
| 930 |
-
query_button = gr.Button("Ask Question", variant="primary", scale=3)
|
| 931 |
-
clear_button = gr.Button("Clear", variant="secondary", scale=1)
|
| 932 |
-
|
| 933 |
-
with gr.Box():
|
| 934 |
-
gr.Markdown("### Answer")
|
| 935 |
-
response_output = gr.Markdown()
|
| 936 |
-
|
| 937 |
-
# Right column for settings
|
| 938 |
with gr.Column(scale=1):
|
| 939 |
# API Keys and model selection
|
| 940 |
-
|
| 941 |
-
|
| 942 |
-
|
| 943 |
-
|
| 944 |
-
|
| 945 |
-
|
| 946 |
-
info=f"Select your preferred AI model"
|
| 947 |
-
)
|
| 948 |
-
|
| 949 |
-
api_key_input = gr.Textbox(
|
| 950 |
-
label="API Key",
|
| 951 |
-
placeholder="Enter your API key here...",
|
| 952 |
-
type="password",
|
| 953 |
-
info="Your key is not stored between sessions"
|
| 954 |
-
)
|
| 955 |
-
|
| 956 |
-
save_key_button = gr.Button("Save API Key", variant="primary")
|
| 957 |
-
api_status = gr.Markdown("")
|
| 958 |
|
| 959 |
-
|
| 960 |
-
|
| 961 |
-
|
| 962 |
-
|
| 963 |
-
|
| 964 |
-
maximum=15,
|
| 965 |
-
value=config.default_top_k,
|
| 966 |
-
step=1,
|
| 967 |
-
label="Documents to search",
|
| 968 |
-
info="Higher values provide more context"
|
| 969 |
-
)
|
| 970 |
-
|
| 971 |
-
temperature_slider = gr.Slider(
|
| 972 |
-
minimum=0.0,
|
| 973 |
-
maximum=1.0,
|
| 974 |
-
value=config.temperature,
|
| 975 |
-
step=0.05,
|
| 976 |
-
label="Creativity",
|
| 977 |
-
info="Lower = more factual, Higher = more creative"
|
| 978 |
-
)
|
| 979 |
-
|
| 980 |
-
max_tokens_slider = gr.Slider(
|
| 981 |
-
minimum=500,
|
| 982 |
-
maximum=4000,
|
| 983 |
-
value=config.max_tokens,
|
| 984 |
-
step=100,
|
| 985 |
-
label="Response Length",
|
| 986 |
-
info="Maximum words in response"
|
| 987 |
-
)
|
| 988 |
|
| 989 |
-
|
| 990 |
-
|
| 991 |
-
|
| 992 |
-
|
| 993 |
-
|
| 994 |
-
|
| 995 |
-
|
| 996 |
-
|
| 997 |
-
|
| 998 |
-
""
|
| 999 |
-
|
| 1000 |
-
|
| 1001 |
-
|
| 1002 |
-
|
| 1003 |
-
|
| 1004 |
-
|
| 1005 |
-
|
| 1006 |
-
|
| 1007 |
-
|
| 1008 |
-
|
| 1009 |
-
datatype=["str", "str", "str"],
|
| 1010 |
-
row_count=5,
|
| 1011 |
-
col_count=(3, "fixed"),
|
| 1012 |
-
interactive=False
|
| 1013 |
-
)
|
| 1014 |
|
| 1015 |
-
|
| 1016 |
-
|
| 1017 |
-
|
| 1018 |
-
|
| 1019 |
-
|
| 1020 |
-
|
| 1021 |
-
|
| 1022 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1023 |
|
| 1024 |
# Function to update API key based on selected model
|
| 1025 |
def update_api_key(api_key, model):
|
| 1026 |
-
if not api_key.strip():
|
| 1027 |
-
return "❌ API key cannot be empty"
|
| 1028 |
-
|
| 1029 |
if model == "openai":
|
| 1030 |
success = rag_system.setup_openai(api_key)
|
| 1031 |
-
model_name =
|
| 1032 |
else:
|
| 1033 |
success = rag_system.setup_gemini(api_key)
|
| 1034 |
-
model_name =
|
| 1035 |
|
| 1036 |
if success:
|
| 1037 |
-
return f"✅ {model_name}
|
| 1038 |
else:
|
| 1039 |
-
return f"❌
|
| 1040 |
|
| 1041 |
# Query function that returns both response and search results
|
| 1042 |
-
def query_and_search(query, n_results, model
|
| 1043 |
-
#
|
| 1044 |
-
|
| 1045 |
-
config.max_tokens = int(max_tokens)
|
| 1046 |
|
| 1047 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1048 |
|
| 1049 |
-
|
| 1050 |
-
return "Please enter a question to get an answer.", "", query_history[-5:] if query_history else []
|
| 1051 |
|
| 1052 |
-
|
| 1053 |
-
|
| 1054 |
-
|
| 1055 |
-
|
| 1056 |
-
|
| 1057 |
-
|
| 1058 |
-
|
| 1059 |
-
|
| 1060 |
-
query=query,
|
| 1061 |
-
n_results=int(n_results),
|
| 1062 |
-
model=model
|
| 1063 |
-
)
|
| 1064 |
-
|
| 1065 |
-
# Add to history
|
| 1066 |
-
timestamp = datetime.now().strftime("%H:%M")
|
| 1067 |
-
query_history.append([timestamp, query, model])
|
| 1068 |
-
|
| 1069 |
-
# Keep only the last 100 queries
|
| 1070 |
-
if len(query_history) > 100:
|
| 1071 |
-
query_history.pop(0)
|
| 1072 |
-
|
| 1073 |
-
# Update the history display with the most recent entries (reverse chronological)
|
| 1074 |
-
recent_history = list(reversed(query_history[-5:])) if len(query_history) >= 5 else list(reversed(query_history))
|
| 1075 |
-
|
| 1076 |
-
# Calculate elapsed time
|
| 1077 |
-
elapsed_time = (datetime.now() - start_time).total_seconds()
|
| 1078 |
-
|
| 1079 |
-
# Add subtle timing information to the response
|
| 1080 |
-
response_with_timing = f"{response}\n\n<small>Answered in {elapsed_time:.1f}s</small>"
|
| 1081 |
-
|
| 1082 |
-
return response_with_timing, search_output_text, recent_history
|
| 1083 |
|
| 1084 |
-
|
| 1085 |
-
error_msg = f"Error processing query: {str(e)}"
|
| 1086 |
-
logger.error(error_msg)
|
| 1087 |
-
logger.error(traceback.format_exc())
|
| 1088 |
-
return "I encountered an error while processing your question. Please try again or check your API key settings.", "", query_history[-5:] if query_history else []
|
| 1089 |
-
|
| 1090 |
-
# Function to clear the input and results
|
| 1091 |
-
def clear_inputs():
|
| 1092 |
-
return "", "", "", query_history[-5:] if query_history else []
|
| 1093 |
|
| 1094 |
# Set up events
|
| 1095 |
save_key_button.click(
|
|
@@ -1100,8 +448,8 @@ def main():
|
|
| 1100 |
|
| 1101 |
query_button.click(
|
| 1102 |
fn=query_and_search,
|
| 1103 |
-
inputs=[query_input, num_results, model_choice
|
| 1104 |
-
outputs=[response_output, search_output
|
| 1105 |
)
|
| 1106 |
|
| 1107 |
refresh_button.click(
|
|
@@ -1109,84 +457,24 @@ def main():
|
|
| 1109 |
inputs=None,
|
| 1110 |
outputs=stats_display
|
| 1111 |
)
|
| 1112 |
-
|
| 1113 |
-
clear_button.click(
|
| 1114 |
-
fn=clear_inputs,
|
| 1115 |
-
inputs=None,
|
| 1116 |
-
outputs=[query_input, response_output, search_output, history_list]
|
| 1117 |
-
)
|
| 1118 |
-
|
| 1119 |
-
# Handle Enter key in query input
|
| 1120 |
-
query_input.submit(
|
| 1121 |
-
fn=query_and_search,
|
| 1122 |
-
inputs=[query_input, num_results, model_choice, temperature_slider, max_tokens_slider],
|
| 1123 |
-
outputs=[response_output, search_output, history_list]
|
| 1124 |
-
)
|
| 1125 |
-
|
| 1126 |
-
# Auto-fill examples
|
| 1127 |
-
examples = [
|
| 1128 |
-
["What are the main features of this application?"],
|
| 1129 |
-
["How does the retrieval augmented generation work?"],
|
| 1130 |
-
["Can you explain the embedding models used in this system?"],
|
| 1131 |
-
]
|
| 1132 |
-
|
| 1133 |
-
gr.Examples(
|
| 1134 |
-
examples=examples,
|
| 1135 |
-
inputs=query_input,
|
| 1136 |
-
outputs=[response_output, search_output, history_list],
|
| 1137 |
-
fn=lambda q: query_and_search(q, num_results.value, model_choice.value, temperature_slider.value, max_tokens_slider.value),
|
| 1138 |
-
cache_examples=False,
|
| 1139 |
-
)
|
| 1140 |
|
| 1141 |
-
# Launch the interface
|
| 1142 |
-
app.launch(
|
| 1143 |
-
|
| 1144 |
-
server_name="0.0.0.0", # Listen on all interfaces
|
| 1145 |
-
server_port=7860, # Default Gradio port
|
| 1146 |
-
debug=False, # Set to True during development
|
| 1147 |
-
auth=None, # Add (username, password) tuple for basic auth
|
| 1148 |
-
favicon_path="favicon.ico" if os.path.exists("favicon.ico") else None,
|
| 1149 |
-
show_error=True
|
| 1150 |
-
)
|
| 1151 |
-
|
| 1152 |
except Exception as e:
|
| 1153 |
-
logger.
|
| 1154 |
-
print(f"Error
|
| 1155 |
sys.exit(1)
|
| 1156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1157 |
if __name__ == "__main__":
|
| 1158 |
-
# Parse command line arguments
|
| 1159 |
-
if len(sys.argv) > 1:
|
| 1160 |
-
if sys.argv[1] == "--load" and len(sys.argv) > 2:
|
| 1161 |
-
# Load documents mode
|
| 1162 |
-
print(f"Document Knowledge Assistant v{VERSION}")
|
| 1163 |
-
print(f"Loading documents into knowledge base...")
|
| 1164 |
-
|
| 1165 |
-
success_count = 0
|
| 1166 |
-
failed_count = 0
|
| 1167 |
-
|
| 1168 |
-
for file_path in sys.argv[2:]:
|
| 1169 |
-
if os.path.exists(file_path):
|
| 1170 |
-
success = load_document(file_path)
|
| 1171 |
-
if success:
|
| 1172 |
-
success_count += 1
|
| 1173 |
-
print(f"✅ Successfully loaded: {file_path}")
|
| 1174 |
-
else:
|
| 1175 |
-
failed_count += 1
|
| 1176 |
-
print(f"❌ Failed to load: {file_path}")
|
| 1177 |
-
else:
|
| 1178 |
-
failed_count += 1
|
| 1179 |
-
print(f"❌ File not found: {file_path}")
|
| 1180 |
-
|
| 1181 |
-
print(f"\nLoading complete: {success_count} documents loaded, {failed_count} failed")
|
| 1182 |
-
sys.exit(0)
|
| 1183 |
-
elif sys.argv[1] == "--help":
|
| 1184 |
-
print(f"Document Knowledge Assistant v{VERSION}")
|
| 1185 |
-
print("Usage:")
|
| 1186 |
-
print(" python rag_system.py # Start the web UI")
|
| 1187 |
-
print(" python rag_system.py --load file1 file2 # Load documents into the knowledge base")
|
| 1188 |
-
print(" python rag_system.py --help # Show this help message")
|
| 1189 |
-
sys.exit(0)
|
| 1190 |
-
|
| 1191 |
-
# Start the web UI
|
| 1192 |
main()
|
|
|
|
| 4 |
from pathlib import Path
|
| 5 |
import json
|
| 6 |
from datetime import datetime
|
| 7 |
+
from typing import List, Dict, Any, Optional
|
|
|
|
| 8 |
|
| 9 |
+
# Configure logging
|
| 10 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 11 |
+
logger = logging.getLogger(__name__)
|
|
|
|
| 12 |
|
| 13 |
+
# Importing necessary libraries
|
| 14 |
+
import torch
|
| 15 |
+
import numpy as np
|
| 16 |
+
from sentence_transformers import SentenceTransformer
|
| 17 |
+
import chromadb
|
| 18 |
+
from chromadb.utils import embedding_functions
|
| 19 |
+
import gradio as gr
|
| 20 |
+
from openai import OpenAI
|
| 21 |
+
import google.generativeai as genai
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
# Configuration class
|
| 24 |
class Config:
|
| 25 |
+
"""Configuration for vector store and RAG"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
def __init__(self,
|
| 27 |
+
local_dir: str = ".",
|
| 28 |
embedding_model: str = "all-MiniLM-L6-v2",
|
| 29 |
+
collection_name: str = "markdown_docs"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
self.local_dir = local_dir
|
| 31 |
self.embedding_model = embedding_model
|
| 32 |
self.collection_name = collection_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
# Embedding engine
|
| 35 |
class EmbeddingEngine:
|
| 36 |
+
"""Handle embeddings with a lightweight model"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
def __init__(self, model_name="all-MiniLM-L6-v2"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
# Use GPU if available
|
| 40 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 41 |
+
logger.info(f"Using device: {self.device}")
|
| 42 |
|
| 43 |
# Try multiple model options in order of preference
|
| 44 |
model_options = [
|
| 45 |
model_name,
|
| 46 |
+
"all-MiniLM-L6-v2",
|
| 47 |
+
"paraphrase-MiniLM-L3-v2",
|
| 48 |
+
"all-mpnet-base-v2" # Higher quality but larger model
|
| 49 |
]
|
| 50 |
|
| 51 |
self.model = None
|
|
|
|
| 53 |
# Try each model in order until one works
|
| 54 |
for model_option in model_options:
|
| 55 |
try:
|
| 56 |
+
logger.info(f"Attempting to load model: {model_option}")
|
| 57 |
self.model = SentenceTransformer(model_option)
|
| 58 |
|
| 59 |
# Move model to device
|
| 60 |
self.model.to(self.device)
|
| 61 |
|
| 62 |
+
logger.info(f"Successfully loaded model: {model_option}")
|
| 63 |
self.model_name = model_option
|
| 64 |
self.vector_size = self.model.get_sentence_embedding_dimension()
|
|
|
|
| 65 |
break
|
| 66 |
|
| 67 |
except Exception as e:
|
| 68 |
+
logger.warning(f"Failed to load model {model_option}: {str(e)}")
|
| 69 |
|
| 70 |
if self.model is None:
|
| 71 |
+
logger.error("Failed to load any embedding model. Exiting.")
|
| 72 |
+
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
class VectorStoreManager:
|
| 75 |
+
"""Manage Chroma vector store operations - upload, query, etc."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
def __init__(self, config: Config):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
self.config = config
|
| 79 |
|
| 80 |
# Initialize Chroma client (local persistence)
|
| 81 |
logger.info(f"Initializing Chroma at {config.local_dir}")
|
| 82 |
+
self.client = chromadb.PersistentClient(path=config.local_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
# Get or create collection
|
| 85 |
try:
|
| 86 |
# Initialize embedding model
|
| 87 |
logger.info("Loading embedding model...")
|
| 88 |
self.embedding_engine = EmbeddingEngine(config.embedding_model)
|
| 89 |
+
logger.info(f"Using model: {self.embedding_engine.model_name}")
|
| 90 |
|
| 91 |
# Create embedding function
|
| 92 |
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
|
| 93 |
model_name=self.embedding_engine.model_name
|
| 94 |
)
|
| 95 |
|
| 96 |
+
# Try to get existing collection
|
| 97 |
try:
|
| 98 |
self.collection = self.client.get_collection(
|
| 99 |
name=config.collection_name,
|
|
|
|
| 101 |
)
|
| 102 |
logger.info(f"Using existing collection: {config.collection_name}")
|
| 103 |
except Exception as e:
|
| 104 |
+
logger.error(f"Error getting collection: {e}")
|
| 105 |
# Attempt to get a list of available collections
|
| 106 |
collections = self.client.list_collections()
|
| 107 |
if collections:
|
|
|
|
| 122 |
logger.info(f"Created new collection: {config.collection_name}")
|
| 123 |
|
| 124 |
except Exception as e:
|
| 125 |
+
logger.error(f"Error initializing Chroma collection: {e}")
|
| 126 |
+
sys.exit(1)
|
|
|
|
| 127 |
|
| 128 |
def query(self, query_text: str, n_results: int = 5) -> List[Dict]:
|
| 129 |
"""
|
| 130 |
+
Query the vector store with a text query
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
try:
|
|
|
|
|
|
|
| 133 |
# Query the collection
|
| 134 |
search_results = self.collection.query(
|
| 135 |
query_texts=[query_text],
|
|
|
|
| 143 |
for i in range(len(search_results["documents"][0])):
|
| 144 |
results.append({
|
| 145 |
'document': search_results["documents"][0][i],
|
| 146 |
+
'metadata': search_results["metadatas"][0][i],
|
| 147 |
+
'score': 1.0 - search_results["distances"][0][i] # Convert distance to similarity
|
|
|
|
| 148 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
return results
|
| 151 |
except Exception as e:
|
| 152 |
logger.error(f"Error querying collection: {e}")
|
|
|
|
| 153 |
return []
|
| 154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
def get_statistics(self) -> Dict[str, Any]:
|
| 156 |
+
"""Get statistics about the vector store"""
|
| 157 |
+
stats = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
try:
|
| 160 |
# Get collection count
|
| 161 |
+
collection_info = self.collection.count()
|
| 162 |
+
stats['total_documents'] = collection_info
|
| 163 |
|
| 164 |
+
# Estimate unique files - with no chunking, each document is a file
|
| 165 |
+
stats['unique_files'] = collection_info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
except Exception as e:
|
| 167 |
logger.error(f"Error getting statistics: {e}")
|
| 168 |
stats['error'] = str(e)
|
|
|
|
| 170 |
return stats
|
| 171 |
|
| 172 |
class RAGSystem:
|
| 173 |
+
"""Retrieval-Augmented Generation with multiple LLM providers"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
+
def __init__(self, vector_store: VectorStoreManager):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
self.vector_store = vector_store
|
|
|
|
| 177 |
self.openai_client = None
|
| 178 |
self.gemini_configured = False
|
|
|
|
|
|
|
| 179 |
|
| 180 |
+
def setup_openai(self, api_key: str):
|
| 181 |
+
"""Set up OpenAI client with API key"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
try:
|
|
|
|
| 183 |
self.openai_client = OpenAI(api_key=api_key)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
return True
|
| 185 |
except Exception as e:
|
| 186 |
logger.error(f"Error initializing OpenAI client: {e}")
|
|
|
|
| 187 |
return False
|
| 188 |
|
| 189 |
+
def setup_gemini(self, api_key: str):
|
| 190 |
+
"""Set up Gemini with API key"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
try:
|
|
|
|
| 192 |
genai.configure(api_key=api_key)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
self.gemini_configured = True
|
|
|
|
| 194 |
return True
|
| 195 |
except Exception as e:
|
| 196 |
logger.error(f"Error configuring Gemini: {e}")
|
|
|
|
| 197 |
return False
|
| 198 |
|
| 199 |
def format_context(self, documents: List[Dict]) -> str:
|
| 200 |
+
"""Format retrieved documents into context for the LLM"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
if not documents:
|
|
|
|
| 202 |
return "No relevant documents found."
|
| 203 |
|
|
|
|
| 204 |
context_parts = []
|
|
|
|
| 205 |
for i, doc in enumerate(documents):
|
| 206 |
metadata = doc['metadata']
|
|
|
|
| 207 |
title = metadata.get('title', metadata.get('filename', 'Unknown document'))
|
| 208 |
|
| 209 |
+
# For readability, limit length of context document
|
|
|
|
|
|
|
|
|
|
| 210 |
doc_text = doc['document']
|
| 211 |
+
if len(doc_text) > 10000: # Limit long documents in context
|
| 212 |
+
doc_text = doc_text[:10000] + "... [Document truncated for context]"
|
|
|
|
|
|
|
| 213 |
|
| 214 |
+
context_parts.append(f"Document {i+1} - {title}:\n{doc_text}\n")
|
| 215 |
|
| 216 |
+
return "\n".join(context_parts)
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
def generate_response_openai(self, query: str, context: str) -> str:
|
| 219 |
+
"""Generate a response using OpenAI model with context"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
if not self.openai_client:
|
| 221 |
+
return "Error: OpenAI API key not configured. Please enter an API key in the API key field."
|
|
|
|
| 222 |
|
|
|
|
| 223 |
system_prompt = """
|
| 224 |
+
You are a helpful assistant that answers questions based on the context provided.
|
| 225 |
+
Use the information from the context to answer the user's question.
|
| 226 |
+
If the context doesn't contain the information needed, say so clearly.
|
| 227 |
+
Always cite the specific sections from the context that you used in your answer.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
"""
|
| 229 |
|
| 230 |
try:
|
|
|
|
|
|
|
|
|
|
| 231 |
response = self.openai_client.chat.completions.create(
|
| 232 |
+
model="gpt-4o-mini", # Use GPT-4o mini
|
| 233 |
messages=[
|
| 234 |
{"role": "system", "content": system_prompt},
|
| 235 |
{"role": "user", "content": f"Context:\n{context}\n\nQuestion: {query}"}
|
| 236 |
],
|
| 237 |
+
temperature=0.3, # Lower temperature for more factual responses
|
| 238 |
+
max_tokens=5000,
|
| 239 |
)
|
| 240 |
+
return response.choices[0].message.content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
except Exception as e:
|
| 242 |
+
logger.error(f"Error generating response with OpenAI: {e}")
|
| 243 |
+
return f"Error generating response with OpenAI: {str(e)}"
|
|
|
|
| 244 |
|
| 245 |
def generate_response_gemini(self, query: str, context: str) -> str:
|
| 246 |
+
"""Generate a response using Gemini with context"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
if not self.gemini_configured:
|
| 248 |
+
return "Error: Google AI API key not configured. Please enter an API key in the API key field."
|
|
|
|
| 249 |
|
|
|
|
| 250 |
prompt = f"""
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
+
<prompt>
|
| 253 |
+
<system>
|
| 254 |
+
<name>Loss Dog</name>
|
| 255 |
+
<role>You are a highly intelligent AI specializing in labor market analysis, job trends, and skillset forecasting. You utilize a combination of structured data from sources like the Bureau of Labor Statistics (BLS) and the World Economic Forum (WEF), alongside advanced retrieval-augmented generation (RAG) techniques.</role>
|
| 256 |
+
<goal>Your mission is to provide insightful, data-driven, and comprehensive answers to users seeking career and job market intelligence. You must ensure clarity, depth, and practical relevance in all responses.</goal>
|
| 257 |
+
<personality>
|
| 258 |
+
<tone>Friendly, professional, and engaging</tone>
|
| 259 |
+
<depth>Detailed, nuanced, and well-explained</depth>
|
| 260 |
+
<clarity>Well-structured with headings, citations, and easy-to-follow breakdowns</clarity>
|
| 261 |
+
</personality>
|
| 262 |
+
<methodology>
|
| 263 |
+
<data_sources>
|
| 264 |
+
<source>Bureau of Labor Statistics (BLS)</source>
|
| 265 |
+
<source>World Economic Forum (WEF) reports</source>
|
| 266 |
+
<source>Market research studies</source>
|
| 267 |
+
<source>Industry whitepapers</source>
|
| 268 |
+
<source>Company hiring trends</source>
|
| 269 |
+
</data_sources>
|
| 270 |
+
<reasoning_strategy>
|
| 271 |
+
<if_data_available>
|
| 272 |
+
<response>
|
| 273 |
+
Use precise statistics, industry insights, and expert analyses from retrieved sources to craft an evidence-based answer.
|
| 274 |
+
</response>
|
| 275 |
+
</if_data_available>
|
| 276 |
+
<if_data_unavailable>
|
| 277 |
+
<response>
|
| 278 |
+
Clearly state that the exact data is unavailable. However, provide a **comprehensive explanation** using logical deduction, adjacent industry trends, historical patterns, and economic principles.
|
| 279 |
+
</response>
|
| 280 |
+
</if_data_unavailable>
|
| 281 |
+
</reasoning_strategy>
|
| 282 |
+
<output_expectations>
|
| 283 |
+
<length>100-500 words, depending on complexity and sources available</length>
|
| 284 |
+
<structure>
|
| 285 |
+
<section>Introduction (sets context and purpose)</section>
|
| 286 |
+
<section>Data-backed analysis (citing retrieved sources)</section>
|
| 287 |
+
<section>Logical deduction and reasoning (when necessary)</section>
|
| 288 |
+
<section>Conclusion (summarizes insights and provides actionable takeaways)</section>
|
| 289 |
+
</structure>
|
| 290 |
+
<citation_style>Clearly cite data sources within the response (e.g., "According to BLS 2024 report...").</citation_style>
|
| 291 |
+
<engagement>Encourage follow-up questions and deeper exploration where relevant.</engagement>
|
| 292 |
+
</output_expectations>
|
| 293 |
+
</methodology>
|
| 294 |
+
</system>
|
| 295 |
+
Context:
|
| 296 |
{context}
|
| 297 |
|
| 298 |
+
Question: {query}
|
|
|
|
|
|
|
|
|
|
| 299 |
"""
|
| 300 |
+
|
| 301 |
try:
|
| 302 |
+
model = genai.GenerativeModel('gemini-1.5-flash')
|
| 303 |
+
response = model.generate_content(prompt)
|
| 304 |
+
return response.text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
except Exception as e:
|
| 306 |
+
logger.error(f"Error generating response with Gemini: {e}")
|
| 307 |
+
return f"Error generating response with Gemini: {str(e)}"
|
|
|
|
| 308 |
|
| 309 |
+
def query_and_generate(self, query: str, n_results: int = 5, model: str = "openai") -> str:
|
| 310 |
+
"""Retrieve relevant documents and generate a response using the specified model"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
# Query vector store
|
| 312 |
documents = self.vector_store.query(query, n_results=n_results)
|
| 313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
if not documents:
|
| 315 |
+
return "No relevant documents found to answer your question."
|
|
|
|
| 316 |
|
| 317 |
# Format context
|
| 318 |
context = self.format_context(documents)
|
| 319 |
|
| 320 |
# Generate response with the appropriate model
|
| 321 |
if model == "openai":
|
| 322 |
+
return self.generate_response_openai(query, context)
|
| 323 |
elif model == "gemini":
|
| 324 |
+
return self.generate_response_gemini(query, context)
|
| 325 |
else:
|
| 326 |
+
return f"Unknown model: {model}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
|
| 328 |
+
# Main function to run the application
|
| 329 |
def main():
|
| 330 |
+
# Initialize the system with current directory as the Chroma location
|
| 331 |
+
config = Config(
|
| 332 |
+
local_dir=".", # Look for Chroma files in current directory
|
| 333 |
+
collection_name="markdown_docs"
|
| 334 |
+
)
|
| 335 |
|
| 336 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
# Initialize vector store manager with existing collection
|
| 338 |
vector_store = VectorStoreManager(config)
|
| 339 |
|
| 340 |
# Initialize RAG system without API keys initially
|
| 341 |
+
rag_system = RAGSystem(vector_store)
|
| 342 |
|
| 343 |
+
# Create the Gradio interface
|
| 344 |
+
with gr.Blocks(title="Document RAG System") as app:
|
| 345 |
+
gr.Markdown("# Document RAG System")
|
|
|
|
| 346 |
|
|
|
|
| 347 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
with gr.Column(scale=1):
|
| 349 |
# API Keys and model selection
|
| 350 |
+
model_choice = gr.Radio(
|
| 351 |
+
choices=["openai", "gemini"],
|
| 352 |
+
value="openai",
|
| 353 |
+
label="Choose LLM Provider",
|
| 354 |
+
info="Select which model to use (GPT-4o mini or Gemini 1.5 Flash)"
|
| 355 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
|
| 357 |
+
api_key_input = gr.Textbox(
|
| 358 |
+
label="API Key",
|
| 359 |
+
placeholder="Enter your API key here...",
|
| 360 |
+
type="password"
|
| 361 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
|
| 363 |
+
save_key_button = gr.Button("Save API Key", variant="primary")
|
| 364 |
+
api_status = gr.Markdown("")
|
| 365 |
+
|
| 366 |
+
# Search controls
|
| 367 |
+
num_results = gr.Slider(
|
| 368 |
+
minimum=1,
|
| 369 |
+
maximum=10,
|
| 370 |
+
value=10,
|
| 371 |
+
step=1,
|
| 372 |
+
label="Number of documents to retrieve"
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
# Database stats
|
| 376 |
+
gr.Markdown("### Database Statistics")
|
| 377 |
+
stats_display = gr.Textbox(
|
| 378 |
+
label="",
|
| 379 |
+
value=get_db_stats(vector_store),
|
| 380 |
+
lines=2
|
| 381 |
+
)
|
| 382 |
+
refresh_button = gr.Button("Refresh Stats")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 383 |
|
| 384 |
+
with gr.Column(scale=2):
|
| 385 |
+
# Query and response
|
| 386 |
+
query_input = gr.Textbox(
|
| 387 |
+
label="Your Question",
|
| 388 |
+
placeholder="Ask a question about your documents...",
|
| 389 |
+
lines=2
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
query_button = gr.Button("Ask Question", variant="primary")
|
| 393 |
+
|
| 394 |
+
gr.Markdown("### Response")
|
| 395 |
+
response_output = gr.Markdown()
|
| 396 |
+
|
| 397 |
+
gr.Markdown("### Document Search Results")
|
| 398 |
+
search_output = gr.Markdown()
|
| 399 |
|
| 400 |
# Function to update API key based on selected model
|
| 401 |
def update_api_key(api_key, model):
|
|
|
|
|
|
|
|
|
|
| 402 |
if model == "openai":
|
| 403 |
success = rag_system.setup_openai(api_key)
|
| 404 |
+
model_name = "OpenAI GPT-4o mini"
|
| 405 |
else:
|
| 406 |
success = rag_system.setup_gemini(api_key)
|
| 407 |
+
model_name = "Google Gemini 1.5 Flash"
|
| 408 |
|
| 409 |
if success:
|
| 410 |
+
return f"✅ {model_name} API key configured successfully"
|
| 411 |
else:
|
| 412 |
+
return f"❌ Failed to configure {model_name} API key"
|
| 413 |
|
| 414 |
# Query function that returns both response and search results
|
| 415 |
+
def query_and_search(query, n_results, model):
|
| 416 |
+
# Get search results first
|
| 417 |
+
results = vector_store.query(query, n_results=int(n_results))
|
|
|
|
| 418 |
|
| 419 |
+
# Format search results
|
| 420 |
+
formatted_results = []
|
| 421 |
+
for i, res in enumerate(results):
|
| 422 |
+
metadata = res['metadata']
|
| 423 |
+
title = metadata.get('title', metadata.get('filename', 'Unknown'))
|
| 424 |
+
preview = res['document'][:500] + '...' if len(res['document']) > 500 else res['document']
|
| 425 |
+
formatted_results.append(f"**Result {i+1}** (Similarity: {res['score']:.2f})\n"
|
| 426 |
+
f"**Source:** {title}\n"
|
| 427 |
+
f"**Preview:**\n{preview}\n\n---\n")
|
| 428 |
|
| 429 |
+
search_output_text = "\n".join(formatted_results) if formatted_results else "No results found."
|
|
|
|
| 430 |
|
| 431 |
+
# Generate response if we have results
|
| 432 |
+
response = "No documents found to answer your question."
|
| 433 |
+
if results:
|
| 434 |
+
context = rag_system.format_context(results)
|
| 435 |
+
if model == "openai":
|
| 436 |
+
response = rag_system.generate_response_openai(query, context)
|
| 437 |
+
else:
|
| 438 |
+
response = rag_system.generate_response_gemini(query, context)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 439 |
|
| 440 |
+
return response, search_output_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 441 |
|
| 442 |
# Set up events
|
| 443 |
save_key_button.click(
|
|
|
|
| 448 |
|
| 449 |
query_button.click(
|
| 450 |
fn=query_and_search,
|
| 451 |
+
inputs=[query_input, num_results, model_choice],
|
| 452 |
+
outputs=[response_output, search_output]
|
| 453 |
)
|
| 454 |
|
| 455 |
refresh_button.click(
|
|
|
|
| 457 |
inputs=None,
|
| 458 |
outputs=stats_display
|
| 459 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 460 |
|
| 461 |
+
# Launch the interface
|
| 462 |
+
app.launch()
|
| 463 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 464 |
except Exception as e:
|
| 465 |
+
logger.error(f"Error initializing application: {e}")
|
| 466 |
+
print(f"Error: {e}")
|
| 467 |
sys.exit(1)
|
| 468 |
|
| 469 |
+
# Helper function to get database stats
|
| 470 |
+
def get_db_stats(vector_store):
|
| 471 |
+
"""Function to get vector store statistics"""
|
| 472 |
+
try:
|
| 473 |
+
stats = vector_store.get_statistics()
|
| 474 |
+
return f"Total documents: {stats.get('total_documents', 0)}"
|
| 475 |
+
except Exception as e:
|
| 476 |
+
logger.error(f"Error getting statistics: {e}")
|
| 477 |
+
return "Error getting database statistics"
|
| 478 |
+
|
| 479 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 480 |
main()
|