RAG_Test / app.py
jzou19950715's picture
Update app.py
1773e23 verified
raw
history blame
18.3 kB
import os
import sys
import logging
from pathlib import Path
import json
import hashlib
from datetime import datetime
import threading
import queue
from typing import List, Dict, Any, Tuple, Optional
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Importing necessary libraries
import torch
import numpy as np
from sentence_transformers import SentenceTransformer
import chromadb
from chromadb.utils import embedding_functions
import gradio as gr
from openai import OpenAI
import google.generativeai as genai
# Configuration class
class Config:
"""Configuration for vector store and RAG"""
def __init__(self,
local_dir: str = "./chroma_data",
batch_size: int = 20,
max_workers: int = 4,
embedding_model: str = "all-MiniLM-L6-v2",
collection_name: str = "markdown_docs"):
self.local_dir = local_dir
self.batch_size = batch_size
self.max_workers = max_workers
self.checkpoint_file = Path(local_dir) / "checkpoint.json"
self.embedding_model = embedding_model
self.collection_name = collection_name
# Create local directory for checkpoints and Chroma
Path(local_dir).mkdir(parents=True, exist_ok=True)
# Embedding engine
class EmbeddingEngine:
"""Handle embeddings with a lightweight model"""
def __init__(self, model_name="all-MiniLM-L6-v2"):
# Use GPU if available
self.device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {self.device}")
# Try multiple model options in order of preference
model_options = [
model_name,
"all-MiniLM-L6-v2",
"paraphrase-MiniLM-L3-v2",
"all-mpnet-base-v2" # Higher quality but larger model
]
self.model = None
# Try each model in order until one works
for model_option in model_options:
try:
logger.info(f"Attempting to load model: {model_option}")
self.model = SentenceTransformer(model_option)
# Move model to device
self.model.to(self.device)
logger.info(f"Successfully loaded model: {model_option}")
self.model_name = model_option
self.vector_size = self.model.get_sentence_embedding_dimension()
break
except Exception as e:
logger.warning(f"Failed to load model {model_option}: {str(e)}")
if self.model is None:
logger.error("Failed to load any embedding model. Exiting.")
sys.exit(1)
def encode(self, text, batch_size=32):
"""Get embedding for a text or list of texts"""
# Handle single text
if isinstance(text, str):
texts = [text]
else:
texts = text
# Truncate texts if necessary to avoid tokenization issues
truncated_texts = [t[:50000] if len(t) > 50000 else t for t in texts]
# Generate embeddings
try:
embeddings = self.model.encode(truncated_texts, batch_size=batch_size,
show_progress_bar=False, convert_to_numpy=True)
return embeddings
except Exception as e:
logger.error(f"Error generating embeddings: {e}")
# Return zero embeddings as fallback
return np.zeros((len(truncated_texts), self.vector_size))
class VectorStoreManager:
"""Manage Chroma vector store operations - upload, query, etc."""
def __init__(self, config: Config):
self.config = config
# Initialize Chroma client (local persistence)
logger.info(f"Initializing Chroma at {config.local_dir}")
self.client = chromadb.PersistentClient(path=config.local_dir)
# Get or create collection
try:
# Initialize embedding model
logger.info("Loading embedding model...")
self.embedding_engine = EmbeddingEngine(config.embedding_model)
logger.info(f"Using model: {self.embedding_engine.model_name}")
# Create embedding function
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name=self.embedding_engine.model_name
)
# Try to get existing collection
try:
self.collection = self.client.get_collection(
name=config.collection_name,
embedding_function=sentence_transformer_ef
)
logger.info(f"Using existing collection: {config.collection_name}")
except:
# Create new collection if it doesn't exist
self.collection = self.client.create_collection(
name=config.collection_name,
embedding_function=sentence_transformer_ef,
metadata={"hnsw:space": "cosine"}
)
logger.info(f"Created new collection: {config.collection_name}")
except Exception as e:
logger.error(f"Error initializing Chroma collection: {e}")
sys.exit(1)
def query(self, query_text: str, n_results: int = 5) -> List[Dict]:
"""
Query the vector store with a text query
"""
try:
# Query the collection
search_results = self.collection.query(
query_texts=[query_text],
n_results=n_results,
include=["documents", "metadatas", "distances"]
)
# Format results
results = []
if search_results["documents"] and len(search_results["documents"][0]) > 0:
for i in range(len(search_results["documents"][0])):
results.append({
'document': search_results["documents"][0][i],
'metadata': search_results["metadatas"][0][i],
'score': 1.0 - search_results["distances"][0][i] # Convert distance to similarity
})
return results
except Exception as e:
logger.error(f"Error querying collection: {e}")
return []
def get_statistics(self) -> Dict[str, Any]:
"""Get statistics about the vector store"""
stats = {}
try:
# Get collection count
collection_info = self.collection.count()
stats['total_documents'] = collection_info
# Estimate unique files - with no chunking, each document is a file
stats['unique_files'] = collection_info
except Exception as e:
logger.error(f"Error getting statistics: {e}")
stats['error'] = str(e)
return stats
class RAGSystem:
"""Retrieval-Augmented Generation with multiple LLM providers"""
def __init__(self, vector_store: VectorStoreManager):
self.vector_store = vector_store
self.openai_client = None
self.gemini_configured = False
def setup_openai(self, api_key: str):
"""Set up OpenAI client with API key"""
try:
self.openai_client = OpenAI(api_key=api_key)
return True
except Exception as e:
logger.error(f"Error initializing OpenAI client: {e}")
return False
def setup_gemini(self, api_key: str):
"""Set up Gemini with API key"""
try:
genai.configure(api_key=api_key)
self.gemini_configured = True
return True
except Exception as e:
logger.error(f"Error configuring Gemini: {e}")
return False
def format_context(self, documents: List[Dict]) -> str:
"""Format retrieved documents into context for the LLM"""
if not documents:
return "No relevant documents found."
context_parts = []
for i, doc in enumerate(documents):
metadata = doc['metadata']
title = metadata.get('title', metadata.get('filename', 'Unknown document'))
# For readability, limit length of context document
doc_text = doc['document']
if len(doc_text) > 10000: # Limit long documents in context
doc_text = doc_text[:10000] + "... [Document truncated for context]"
context_parts.append(f"Document {i+1} - {title}:\n{doc_text}\n")
return "\n".join(context_parts)
def generate_response_openai(self, query: str, context: str) -> str:
"""Generate a response using OpenAI model with context"""
if not self.openai_client:
return "Error: OpenAI API key not configured. Please enter an API key in the settings tab."
system_prompt = """
You are a helpful assistant that answers questions based on the context provided.
Use the information from the context to answer the user's question.
If the context doesn't contain the information needed, say so clearly.
Always cite the specific sections from the context that you used in your answer.
"""
try:
response = self.openai_client.chat.completions.create(
model="gpt-4o-mini", # Use GPT-4o mini
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Context:\n{context}\n\nQuestion: {query}"}
],
temperature=0.3, # Lower temperature for more factual responses
max_tokens=1000,
)
return response.choices[0].message.content
except Exception as e:
logger.error(f"Error generating response with OpenAI: {e}")
return f"Error generating response with OpenAI: {str(e)}"
def generate_response_gemini(self, query: str, context: str) -> str:
"""Generate a response using Gemini with context"""
if not self.gemini_configured:
return "Error: Google AI API key not configured. Please enter an API key in the settings tab."
prompt = f"""
You are a helpful assistant that answers questions based on the context provided.
Use the information from the context to answer the user's question.
If the context doesn't contain the information needed, say so clearly.
Always cite the specific sections from the context that you used in your answer.
Context:
{context}
Question: {query}
"""
try:
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(prompt)
return response.text
except Exception as e:
logger.error(f"Error generating response with Gemini: {e}")
return f"Error generating response with Gemini: {str(e)}"
def query_and_generate(self, query: str, n_results: int = 5, model: str = "openai") -> str:
"""Retrieve relevant documents and generate a response using the specified model"""
# Query vector store
documents = self.vector_store.query(query, n_results=n_results)
if not documents:
return "No relevant documents found to answer your question."
# Format context
context = self.format_context(documents)
# Generate response with the appropriate model
if model == "openai":
return self.generate_response_openai(query, context)
elif model == "gemini":
return self.generate_response_gemini(query, context)
else:
return f"Unknown model: {model}"
def rag_chat(query, n_results, model_choice, rag_system):
"""Function to handle RAG chat queries"""
return rag_system.query_and_generate(query, n_results=int(n_results), model=model_choice)
def simple_query(query, n_results, vector_store):
"""Function to handle simple vector store queries"""
results = vector_store.query(query, n_results=int(n_results))
# Format results for display
formatted = []
for i, res in enumerate(results):
metadata = res['metadata']
title = metadata.get('title', metadata.get('filename', 'Unknown'))
# Limit preview text for display
preview = res['document'][:800] + '...' if len(res['document']) > 800 else res['document']
formatted.append(f"**Result {i+1}** (Similarity: {res['score']:.2f})\n\n"
f"**Source:** {title}\n\n"
f"**Content:**\n{preview}\n\n"
f"---\n")
return "\n".join(formatted) if formatted else "No results found."
def get_db_stats(vector_store):
"""Function to get vector store statistics"""
stats = vector_store.get_statistics()
return (f"Total documents: {stats.get('total_documents', 0)}\n"
f"Unique files: {stats.get('unique_files', 0)}")
def update_api_keys(openai_key, gemini_key, rag_system):
"""Update API keys for the RAG system"""
success_msg = []
if openai_key:
if rag_system.setup_openai(openai_key):
success_msg.append("βœ… OpenAI API key configured successfully")
else:
success_msg.append("❌ Failed to configure OpenAI API key")
if gemini_key:
if rag_system.setup_gemini(gemini_key):
success_msg.append("βœ… Google AI API key configured successfully")
else:
success_msg.append("❌ Failed to configure Google AI API key")
if not success_msg:
return "Please enter at least one API key"
return "\n".join(success_msg)
# Main function to run the application
def main():
# Set up paths for existing Chroma database
chroma_dir = Path("./chroma_data")
# Initialize the system
config = Config(
local_dir=str(chroma_dir),
collection_name="markdown_docs"
)
# Initialize vector store manager with existing collection
vector_store = VectorStoreManager(config)
# Initialize RAG system without API keys initially
rag_system = RAGSystem(vector_store)
# Define Gradio app
def rag_chat_wrapper(query, n_results, model_choice):
return rag_chat(query, n_results, model_choice, rag_system)
def simple_query_wrapper(query, n_results):
return simple_query(query, n_results, vector_store)
def update_api_keys_wrapper(openai_key, gemini_key):
return update_api_keys(openai_key, gemini_key, rag_system)
# Create the Gradio interface
with gr.Blocks(title="Markdown RAG System") as app:
gr.Markdown("# RAG System with Multiple LLM Providers")
with gr.Tab("Chat with Documents"):
with gr.Row():
with gr.Column(scale=3):
query_input = gr.Textbox(label="Question", placeholder="Ask a question about your documents...")
num_results = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Number of documents to retrieve")
model_choice = gr.Radio(
choices=["openai", "gemini"],
value="openai",
label="Choose LLM Provider",
info="Select which model to use for generating answers"
)
query_button = gr.Button("Ask", variant="primary")
with gr.Column(scale=7):
response_output = gr.Markdown(label="Response")
# Database stats
stats_display = gr.Textbox(label="Database Statistics", value=get_db_stats(vector_store))
refresh_button = gr.Button("Refresh Statistics")
with gr.Tab("Document Search"):
search_input = gr.Textbox(label="Search Query", placeholder="Search your documents...")
search_num = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of results")
search_button = gr.Button("Search", variant="primary")
search_output = gr.Markdown(label="Search Results")
with gr.Tab("Settings"):
gr.Markdown("""
## API Keys Configuration
This application can use either OpenAI's GPT-4o-mini or Google's Gemini 1.5 Flash for generating responses.
You need to provide at least one API key to use the chat functionality.
""")
openai_key_input = gr.Textbox(
label="OpenAI API Key",
placeholder="Enter your OpenAI API key here...",
type="password"
)
gemini_key_input = gr.Textbox(
label="Google AI API Key",
placeholder="Enter your Google AI API key here...",
type="password"
)
save_keys_button = gr.Button("Save API Keys", variant="primary")
api_status = gr.Markdown("")
# Set up events
query_button.click(
fn=rag_chat_wrapper,
inputs=[query_input, num_results, model_choice],
outputs=response_output
)
refresh_button.click(
fn=lambda: get_db_stats(vector_store),
inputs=None,
outputs=stats_display
)
search_button.click(
fn=simple_query_wrapper,
inputs=[search_input, search_num],
outputs=search_output
)
save_keys_button.click(
fn=update_api_keys_wrapper,
inputs=[openai_key_input, gemini_key_input],
outputs=api_status
)
# Launch the interface
app.launch()
if __name__ == "__main__":
main()