Update app.py
Browse files
app.py
CHANGED
|
@@ -29,85 +29,186 @@ Be friendly and conversational. Ask follow-up questions naturally. When appropri
|
|
| 29 |
but respect their boundaries. Once you believe you have gathered sufficient information (or if the user indicates they
|
| 30 |
have nothing more to share), let them know they can click 'Generate Profile' to proceed.
|
| 31 |
"""
|
| 32 |
-
EXTRACTION_PROMPT = """You are a
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
- Project Contributions & Leadership
|
| 43 |
-
- Work Performance & Impact Metrics
|
| 44 |
-
|
| 45 |
-
3. Clean and structure the information:
|
| 46 |
-
- Deduplicate repeated information
|
| 47 |
-
- Resolve any inconsistencies
|
| 48 |
-
- Make reasonable inferences when dates or details are partial
|
| 49 |
-
- Standardize formatting (dates, company names, titles)
|
| 50 |
-
|
| 51 |
-
4. Output a VALID JSON object with this exact structure:
|
| 52 |
{
|
| 53 |
"work_history_experience": {
|
| 54 |
"positions": [
|
| 55 |
{
|
| 56 |
-
"title":
|
| 57 |
-
"company":
|
| 58 |
-
"
|
| 59 |
-
"
|
| 60 |
-
"
|
| 61 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
}
|
| 63 |
]
|
| 64 |
},
|
| 65 |
"skills_certifications": {
|
| 66 |
-
"
|
|
|
|
|
|
|
|
|
|
| 67 |
"certifications": [
|
| 68 |
{
|
| 69 |
-
"name":
|
| 70 |
-
"issuer":
|
| 71 |
-
"date":
|
| 72 |
-
"confidence":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
}
|
| 74 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
}
|
| 76 |
-
// ... other categories following similar structure
|
| 77 |
}
|
| 78 |
|
| 79 |
-
|
| 80 |
-
- Return ONLY valid JSON
|
| 81 |
-
- Always include confidence scores (0.0-1.0)
|
| 82 |
-
- Mark any inferred information
|
| 83 |
-
- Use consistent date formats (YYYY-MM-DD)
|
| 84 |
-
- Clean and standardize all text fields
|
| 85 |
-
- Return empty arrays [] for missing sections rather than null
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
class ProfileBuilder:
|
| 112 |
def __init__(self):
|
| 113 |
self.conversation_history = []
|
|
|
|
| 29 |
but respect their boundaries. Once you believe you have gathered sufficient information (or if the user indicates they
|
| 30 |
have nothing more to share), let them know they can click 'Generate Profile' to proceed.
|
| 31 |
"""
|
| 32 |
+
EXTRACTION_PROMPT = """You are a professional information extraction system. Your task is to methodically analyze conversations and organize information into 9 specific categories. Process each category thoroughly and output in structured JSON format.
|
| 33 |
+
|
| 34 |
+
ANALYTICAL PROCESS:
|
| 35 |
+
1. Read entire conversation history
|
| 36 |
+
2. Extract explicit and implicit information
|
| 37 |
+
3. Make reasonable inferences when appropriate
|
| 38 |
+
4. Structure data according to defined schema
|
| 39 |
+
5. Include confidence scores for all extracted information
|
| 40 |
+
|
| 41 |
+
OUTPUT SCHEMA:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
{
|
| 43 |
"work_history_experience": {
|
| 44 |
"positions": [
|
| 45 |
{
|
| 46 |
+
"title": string,
|
| 47 |
+
"company": string,
|
| 48 |
+
"industry": string,
|
| 49 |
+
"location": string,
|
| 50 |
+
"employment_type": string,
|
| 51 |
+
"adaptability": {
|
| 52 |
+
"career_shifts": string[],
|
| 53 |
+
"upskilling": string[]
|
| 54 |
+
},
|
| 55 |
+
"promotions": string[],
|
| 56 |
+
"confidence": float
|
| 57 |
+
}
|
| 58 |
+
]
|
| 59 |
+
},
|
| 60 |
+
"salary_compensation": {
|
| 61 |
+
"history": [
|
| 62 |
+
{
|
| 63 |
+
"base_salary": number | null,
|
| 64 |
+
"bonus_structure": string | null,
|
| 65 |
+
"stock_options": {
|
| 66 |
+
"type": string,
|
| 67 |
+
"details": string
|
| 68 |
+
},
|
| 69 |
+
"commission": string | null,
|
| 70 |
+
"benefits": {
|
| 71 |
+
"health": string,
|
| 72 |
+
"pto": string,
|
| 73 |
+
"retirement": string,
|
| 74 |
+
"other": string[]
|
| 75 |
+
},
|
| 76 |
+
"confidence": float
|
| 77 |
}
|
| 78 |
]
|
| 79 |
},
|
| 80 |
"skills_certifications": {
|
| 81 |
+
"hard_skills": string[],
|
| 82 |
+
"soft_skills": string[],
|
| 83 |
+
"programming_languages": string[],
|
| 84 |
+
"spoken_languages": string[],
|
| 85 |
"certifications": [
|
| 86 |
{
|
| 87 |
+
"name": string,
|
| 88 |
+
"issuer": string,
|
| 89 |
+
"date": string,
|
| 90 |
+
"confidence": float
|
| 91 |
+
}
|
| 92 |
+
],
|
| 93 |
+
"licenses": [
|
| 94 |
+
{
|
| 95 |
+
"type": string,
|
| 96 |
+
"issuer": string,
|
| 97 |
+
"valid_until": string,
|
| 98 |
+
"confidence": float
|
| 99 |
}
|
| 100 |
]
|
| 101 |
+
},
|
| 102 |
+
"education_learning": {
|
| 103 |
+
"formal_education": [
|
| 104 |
+
{
|
| 105 |
+
"degree": string,
|
| 106 |
+
"institution": string,
|
| 107 |
+
"gpa": number | null,
|
| 108 |
+
"research": string[],
|
| 109 |
+
"period": {
|
| 110 |
+
"start": string,
|
| 111 |
+
"end": string | null
|
| 112 |
+
},
|
| 113 |
+
"confidence": float
|
| 114 |
+
}
|
| 115 |
+
],
|
| 116 |
+
"online_courses": [],
|
| 117 |
+
"executive_education": []
|
| 118 |
+
},
|
| 119 |
+
"personal_branding": {
|
| 120 |
+
"portfolio": {
|
| 121 |
+
"github": string | null,
|
| 122 |
+
"behance": string | null,
|
| 123 |
+
"other": string[]
|
| 124 |
+
},
|
| 125 |
+
"blog_posts": [],
|
| 126 |
+
"blockchain_projects": {
|
| 127 |
+
"nfts": [],
|
| 128 |
+
"defi": [],
|
| 129 |
+
"dapps": []
|
| 130 |
+
},
|
| 131 |
+
"public_speaking": [],
|
| 132 |
+
"social_media": {
|
| 133 |
+
"platforms": [],
|
| 134 |
+
"influence_metrics": {}
|
| 135 |
+
}
|
| 136 |
+
},
|
| 137 |
+
"achievements_awards": {
|
| 138 |
+
"industry_awards": [],
|
| 139 |
+
"hackathons": [],
|
| 140 |
+
"peer_endorsements": [],
|
| 141 |
+
"creative_projects": {
|
| 142 |
+
"ai_art": [],
|
| 143 |
+
"other": []
|
| 144 |
+
}
|
| 145 |
+
},
|
| 146 |
+
"social_proof_networking": {
|
| 147 |
+
"mentors": [],
|
| 148 |
+
"references": [],
|
| 149 |
+
"memberships": [
|
| 150 |
+
{
|
| 151 |
+
"organization": string,
|
| 152 |
+
"type": string,
|
| 153 |
+
"period": string,
|
| 154 |
+
"confidence": float
|
| 155 |
+
}
|
| 156 |
+
],
|
| 157 |
+
"conference_engagement": []
|
| 158 |
+
},
|
| 159 |
+
"project_contributions": {
|
| 160 |
+
"major_projects": [],
|
| 161 |
+
"open_source": [],
|
| 162 |
+
"team_leadership": [],
|
| 163 |
+
"patents": [],
|
| 164 |
+
"impact": {
|
| 165 |
+
"description": string,
|
| 166 |
+
"metrics": string[],
|
| 167 |
+
"confidence": float
|
| 168 |
+
}
|
| 169 |
+
},
|
| 170 |
+
"work_performance_metrics": {
|
| 171 |
+
"kpis": [],
|
| 172 |
+
"revenue_impact": [],
|
| 173 |
+
"efficiency_gains": [],
|
| 174 |
+
"career_growth": [],
|
| 175 |
+
"leadership_influence": []
|
| 176 |
}
|
|
|
|
| 177 |
}
|
| 178 |
|
| 179 |
+
EXTRACTION GUIDELINES:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
+
1. Process systematically:
|
| 182 |
+
- Analyze conversation thoroughly
|
| 183 |
+
- Look for both direct statements and implied information
|
| 184 |
+
- Cross-reference information across different parts of conversation
|
| 185 |
+
- Make reasonable inferences when appropriate
|
| 186 |
|
| 187 |
+
2. For each piece of information:
|
| 188 |
+
- Clean and standardize the data
|
| 189 |
+
- Assign confidence scores (0.0-1.0)
|
| 190 |
+
- Mark inferred information
|
| 191 |
+
- Include source context where relevant
|
| 192 |
+
|
| 193 |
+
3. Quality requirements:
|
| 194 |
+
- Use consistent date formats (YYYY-MM-DD)
|
| 195 |
+
- Standardize company names and titles
|
| 196 |
+
- Use empty arrays [] for missing information
|
| 197 |
+
- Never use null for array fields
|
| 198 |
+
- Include confidence scores for all extracted data
|
| 199 |
+
|
| 200 |
+
4. Handle missing information:
|
| 201 |
+
- Use empty arrays [] rather than null
|
| 202 |
+
- Mark inferred information clearly
|
| 203 |
+
- Include partial information when complete data isn't available
|
| 204 |
+
- Note uncertainty in confidence scores
|
| 205 |
+
|
| 206 |
+
Remember to:
|
| 207 |
+
- Process each category thoroughly
|
| 208 |
+
- Cross-reference information for consistency
|
| 209 |
+
- Make reasonable inferences when appropriate
|
| 210 |
+
- Maintain consistent formatting
|
| 211 |
+
- Include all required fields even if empty"""
|
| 212 |
class ProfileBuilder:
|
| 213 |
def __init__(self):
|
| 214 |
self.conversation_history = []
|