Update app.py
Browse files
app.py
CHANGED
@@ -1,530 +1,131 @@
|
|
1 |
import json
|
2 |
import logging
|
3 |
-
import os
|
4 |
from datetime import datetime
|
5 |
-
from typing import Dict, List, Optional, Any
|
6 |
-
from dataclasses import dataclass, field
|
7 |
-
|
8 |
-
import openai
|
9 |
import gradio as gr
|
|
|
10 |
|
11 |
-
#
|
12 |
-
logging.basicConfig(
|
13 |
-
level=logging.INFO,
|
14 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
15 |
-
handlers=[
|
16 |
-
logging.StreamHandler(),
|
17 |
-
logging.FileHandler('loss_dog.log')
|
18 |
-
]
|
19 |
-
)
|
20 |
logger = logging.getLogger(__name__)
|
21 |
|
22 |
-
# System
|
23 |
-
CONVERSATION_PROMPT =
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
<step>Begin with current role</step>
|
57 |
-
<step>Explore career journey naturally</step>
|
58 |
-
<step>Discuss achievements organically</step>
|
59 |
-
<step>Note specific metrics when shared</step>
|
60 |
-
</approach>
|
61 |
-
</category>
|
62 |
-
|
63 |
-
<category name="education_training">
|
64 |
-
<fields>
|
65 |
-
<field>Formal education</field>
|
66 |
-
<field>Certifications</field>
|
67 |
-
<field>Specialized training</field>
|
68 |
-
<field>Continuous learning</field>
|
69 |
-
</fields>
|
70 |
-
<data_points>
|
71 |
-
<point>Institution names</point>
|
72 |
-
<point>Degree details</point>
|
73 |
-
<point>Time periods</point>
|
74 |
-
<point>Special achievements</point>
|
75 |
-
</data_points>
|
76 |
-
</category>
|
77 |
-
|
78 |
-
<category name="skills_expertise">
|
79 |
-
<fields>
|
80 |
-
<field>Technical skills</field>
|
81 |
-
<field>Soft skills</field>
|
82 |
-
<field>Tools and technologies</field>
|
83 |
-
<field>Domain expertise</field>
|
84 |
-
</fields>
|
85 |
-
<metrics>
|
86 |
-
<metric>Proficiency levels</metric>
|
87 |
-
<metric>Years of experience</metric>
|
88 |
-
<metric>Project applications</metric>
|
89 |
-
</metrics>
|
90 |
-
</category>
|
91 |
-
|
92 |
-
<category name="digital_presence">
|
93 |
-
<fields>
|
94 |
-
<field>Social media impact</field>
|
95 |
-
<field>Content creation</field>
|
96 |
-
<field>Community engagement</field>
|
97 |
-
<field>Digital assets</field>
|
98 |
-
</fields>
|
99 |
-
<metrics>
|
100 |
-
<metric>Follower counts</metric>
|
101 |
-
<metric>Engagement rates</metric>
|
102 |
-
<metric>Content reach</metric>
|
103 |
-
<metric>Portfolio value</metric>
|
104 |
-
</metrics>
|
105 |
-
</category>
|
106 |
-
|
107 |
-
<category name="projects_contributions">
|
108 |
-
<fields>
|
109 |
-
<field>Major projects</field>
|
110 |
-
<field>Open source contributions</field>
|
111 |
-
<field>Creative works</field>
|
112 |
-
<field>Impact metrics</field>
|
113 |
-
</fields>
|
114 |
-
<data_collection>
|
115 |
-
<point>Project descriptions</point>
|
116 |
-
<point>Role and responsibilities</point>
|
117 |
-
<point>Technologies used</point>
|
118 |
-
<point>Measurable outcomes</point>
|
119 |
-
</data_collection>
|
120 |
-
</category>
|
121 |
-
</information_categories>
|
122 |
-
|
123 |
-
<conversation_strategies>
|
124 |
-
<engagement_patterns>
|
125 |
-
<pattern type="initial_contact">
|
126 |
-
<approach>Open with friendly, professional greeting</approach>
|
127 |
-
<focus>Establish comfortable rapport</focus>
|
128 |
-
<goal>Begin natural information gathering</goal>
|
129 |
-
</pattern>
|
130 |
-
|
131 |
-
<pattern type="information_gathering">
|
132 |
-
<approach>Use natural conversation flow</approach>
|
133 |
-
<focus>Follow user's narrative</focus>
|
134 |
-
<goal>Collect relevant details organically</goal>
|
135 |
-
</pattern>
|
136 |
-
|
137 |
-
<pattern type="follow_up">
|
138 |
-
<approach>Ask relevant, contextual questions</approach>
|
139 |
-
<focus>Deepen understanding of shared information</focus>
|
140 |
-
<goal>Gather additional context and details</goal>
|
141 |
-
</pattern>
|
142 |
-
</engagement_patterns>
|
143 |
-
|
144 |
-
<response_handling>
|
145 |
-
<scenario type="shared_information">
|
146 |
-
<action>Acknowledge and validate</action>
|
147 |
-
<action>Note key points</action>
|
148 |
-
<action>Ask natural follow-up if appropriate</action>
|
149 |
-
</scenario>
|
150 |
-
|
151 |
-
<scenario type="hesitation">
|
152 |
-
<action>Respect boundaries</action>
|
153 |
-
<action>Shift to comfortable topics</action>
|
154 |
-
<action>Leave door open for later sharing</action>
|
155 |
-
</scenario>
|
156 |
-
|
157 |
-
<scenario type="completion">
|
158 |
-
<action>Summarize collected information</action>
|
159 |
-
<action>Verify accuracy</action>
|
160 |
-
<action>Transition smoothly to next topic</action>
|
161 |
-
</scenario>
|
162 |
-
</response_handling>
|
163 |
-
</conversation_strategies>
|
164 |
-
|
165 |
-
<output_guidelines>
|
166 |
-
<quality_standards>
|
167 |
-
<standard>Professional language</standard>
|
168 |
-
<standard>Accurate representation</standard>
|
169 |
-
<standard>Structured organization</standard>
|
170 |
-
<standard>Clear categorization</standard>
|
171 |
-
</quality_standards>
|
172 |
-
</output_guidelines>
|
173 |
-
|
174 |
-
<ethics_guidelines>
|
175 |
-
<principle>Respect user privacy</principle>
|
176 |
-
<principle>Never pressure for information</principle>
|
177 |
-
<principle>Maintain professional boundaries</principle>
|
178 |
-
<principle>Ensure data accuracy</principle>
|
179 |
-
</ethics_guidelines>
|
180 |
-
</system_prompt>
|
181 |
-
'''
|
182 |
-
|
183 |
-
EXTRACTION_PROMPT = '''
|
184 |
-
<?xml version="1.0" encoding="UTF-8"?>
|
185 |
-
<system_prompt>
|
186 |
-
<assistant_identity>
|
187 |
-
<name>LOSS DOG - Information Processor</name>
|
188 |
-
<role>Conversation Analyzer and Information Extractor</role>
|
189 |
-
<purpose>Process conversation history to extract and structure professional profile information</purpose>
|
190 |
-
</assistant_identity>
|
191 |
-
|
192 |
-
<task_description>
|
193 |
-
Your task is to analyze the provided conversation history and extract structured profile information:
|
194 |
-
1. Process natural conversation into structured data
|
195 |
-
2. Identify and categorize relevant information
|
196 |
-
3. Make intelligent inferences when appropriate
|
197 |
-
4. Maintain high accuracy and data quality
|
198 |
-
5. Handle messy or non-linear conversation flows
|
199 |
-
</task_description>
|
200 |
-
|
201 |
-
<extraction_guidelines>
|
202 |
-
<primary_objective>
|
203 |
-
Convert conversation data into clean, structured JSON that matches these categories:
|
204 |
-
- personal_info (name, contact, location)
|
205 |
-
- education (degree, institution, field, dates)
|
206 |
-
- work_experience (title, company, duration, responsibilities)
|
207 |
-
- skills (technical, soft_skills, tools)
|
208 |
-
- achievements (awards, publications, projects)
|
209 |
-
- digital_presence (social_media, content_creation, community_impact)
|
210 |
-
</primary_objective>
|
211 |
-
|
212 |
-
<processing_rules>
|
213 |
-
<rule>Focus on factual information over casual conversation</rule>
|
214 |
-
<rule>Handle partial or incomplete information gracefully</rule>
|
215 |
-
<rule>Use context to resolve ambiguities</rule>
|
216 |
-
<rule>Track confidence levels for all extracted data</rule>
|
217 |
-
<rule>Mark any inferred information clearly</rule>
|
218 |
-
<rule>Maintain source context for future reference</rule>
|
219 |
-
</processing_rules>
|
220 |
-
|
221 |
-
<data_handling>
|
222 |
-
<instruction>For each piece of extracted information, provide:
|
223 |
-
- Category classification
|
224 |
-
- Confidence score (0.0-1.0)
|
225 |
-
- Source context (relevant conversation snippet)
|
226 |
-
- List of any inferred fields
|
227 |
-
- Structured data in appropriate format
|
228 |
-
</instruction>
|
229 |
-
</data_handling>
|
230 |
-
</extraction_guidelines>
|
231 |
-
|
232 |
-
<output_format>
|
233 |
-
<format_rules>
|
234 |
-
<rule>Return JSON object with categorized sections</rule>
|
235 |
-
<rule>Include confidence scores (0.0-1.0) for each section</rule>
|
236 |
-
<rule>Mark inferred information with "inferred": true</rule>
|
237 |
-
<rule>Include source context for traceability</rule>
|
238 |
-
<rule>Use consistent date formats (YYYY-MM-DD where possible)</rule>
|
239 |
-
</format_rules>
|
240 |
-
|
241 |
-
<structure>
|
242 |
-
{
|
243 |
-
"category_name": {
|
244 |
-
"data": {
|
245 |
-
// Structured data specific to category
|
246 |
-
},
|
247 |
-
"confidence": float,
|
248 |
-
"source_context": string,
|
249 |
-
"inferred_fields": [string],
|
250 |
-
"metadata": {
|
251 |
-
// Additional category-specific metadata
|
252 |
-
}
|
253 |
-
}
|
254 |
-
}
|
255 |
-
</structure>
|
256 |
-
</output_format>
|
257 |
-
|
258 |
-
<quality_controls>
|
259 |
-
<validations>
|
260 |
-
<validation>Check date consistency and sequences</validation>
|
261 |
-
<validation>Verify logical relationships between entries</validation>
|
262 |
-
<validation>Ensure required fields are present or marked missing</validation>
|
263 |
-
<validation>Confirm confidence scores are justified</validation>
|
264 |
-
</validations>
|
265 |
-
|
266 |
-
<error_handling>
|
267 |
-
<case>Handle conflicting information by preferring most recent/confident</case>
|
268 |
-
<case>Mark ambiguous information with multiple possible interpretations</case>
|
269 |
-
<case>Skip unverifiable information rather than making weak inferences</case>
|
270 |
-
</error_handling>
|
271 |
-
</quality_controls>
|
272 |
-
</system_prompt>
|
273 |
-
'''
|
274 |
-
|
275 |
-
@dataclass
|
276 |
-
class ProfileSection:
|
277 |
-
"""Represents a section of the professional profile with structured data."""
|
278 |
-
category: str
|
279 |
-
data: Dict[str, Any]
|
280 |
-
confidence: float
|
281 |
-
source_context: str
|
282 |
-
inferred_fields: List[str] = field(default_factory=list)
|
283 |
-
last_updated: datetime = field(default_factory=datetime.now)
|
284 |
-
metadata: Dict[str, Any] = field(default_factory=dict)
|
285 |
-
|
286 |
-
@dataclass
|
287 |
-
class ConversationState:
|
288 |
-
"""Tracks the state of the information gathering conversation."""
|
289 |
-
collected_sections: Dict[str, ProfileSection] = field(default_factory=dict)
|
290 |
-
missing_information: List[str] = field(default_factory=list)
|
291 |
-
conversation_history: List[Dict[str, str]] = field(default_factory=list)
|
292 |
-
completion_status: Dict[str, float] = field(default_factory=dict)
|
293 |
-
current_focus: Optional[str] = None
|
294 |
-
extraction_history: List[Dict[str, Any]] = field(default_factory=list)
|
295 |
|
296 |
class ProfileBuilder:
|
297 |
-
"""
|
298 |
-
Core class for building professional profiles through conversation and extraction.
|
299 |
-
Implements two-phase approach:
|
300 |
-
1. Interactive conversation for information gathering
|
301 |
-
2. Structured information extraction and processing
|
302 |
-
"""
|
303 |
-
|
304 |
def __init__(self):
|
305 |
-
|
306 |
-
self.
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
}
|
315 |
-
self._api_key: Optional[str] = None
|
316 |
-
self._setup_logging()
|
317 |
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
|
328 |
-
def _initialize_client(self, api_key: str) -> None:
|
329 |
-
"""Initialize OpenAI client with API key."""
|
330 |
-
try:
|
331 |
-
if not api_key.startswith("sk-"):
|
332 |
-
raise ValueError("Invalid API key format")
|
333 |
-
self._api_key = api_key
|
334 |
-
openai.api_key = api_key
|
335 |
-
self.logger.info("OpenAI client initialized successfully")
|
336 |
except Exception as e:
|
337 |
-
|
338 |
-
|
339 |
|
340 |
-
async def
|
341 |
-
"""
|
342 |
try:
|
343 |
-
#
|
344 |
conversation_text = "\n".join(
|
345 |
f"{msg['role']}: {msg['content']}"
|
346 |
-
for msg in self.
|
347 |
)
|
348 |
|
349 |
-
|
350 |
-
{"role": "system", "content": EXTRACTION_PROMPT},
|
351 |
-
{"role": "user", "content": f"Extract professional profile information from this conversation:\n\n{conversation_text}"}
|
352 |
-
]
|
353 |
-
|
354 |
response = await openai.ChatCompletion.acreate(
|
355 |
model="gpt-4o-mini",
|
356 |
-
messages=
|
357 |
-
|
358 |
-
|
|
|
|
|
359 |
)
|
360 |
|
361 |
-
# Parse
|
362 |
-
|
363 |
-
|
364 |
-
# Convert to ProfileSection objects
|
365 |
-
sections = {}
|
366 |
-
for category, data in extracted_data.items():
|
367 |
-
sections[category] = ProfileSection(
|
368 |
-
category=category,
|
369 |
-
data=data.get("data", {}),
|
370 |
-
confidence=data.get("confidence", 0.0),
|
371 |
-
source_context=data.get("source_context", ""),
|
372 |
-
inferred_fields=data.get("inferred_fields", []),
|
373 |
-
metadata=data.get("metadata", {})
|
374 |
-
)
|
375 |
-
|
376 |
-
# Log extraction results
|
377 |
-
self.logger.info(f"Successfully extracted information for {len(sections)} sections")
|
378 |
-
return sections
|
379 |
-
|
380 |
-
except Exception as e:
|
381 |
-
self.logger.error(f"Error in extraction phase: {str(e)}")
|
382 |
-
raise
|
383 |
-
|
384 |
-
def _parse_extraction_response(self, response_text: str) -> Dict[str, Any]:
|
385 |
-
"""Parse and validate the extraction response."""
|
386 |
-
try:
|
387 |
-
extracted_data = json.loads(response_text)
|
388 |
-
self._validate_extracted_data(extracted_data)
|
389 |
-
return extracted_data
|
390 |
-
except json.JSONDecodeError as e:
|
391 |
-
self.logger.error(f"Failed to parse extraction response: {str(e)}")
|
392 |
-
return {}
|
393 |
-
except Exception as e:
|
394 |
-
self.logger.error(f"Error processing extraction response: {str(e)}")
|
395 |
-
return {}
|
396 |
-
|
397 |
-
def _validate_extracted_data(self, data: Dict[str, Any]) -> None:
|
398 |
-
"""Validate the structure and content of extracted data."""
|
399 |
-
required_keys = ["data", "confidence", "source_context"]
|
400 |
-
for category, section in data.items():
|
401 |
-
missing_keys = [key for key in required_keys if key not in section]
|
402 |
-
if missing_keys:
|
403 |
-
self.logger.warning(f"Missing required keys {missing_keys} in category {category}")
|
404 |
-
raise ValueError(f"Invalid data structure for category {category}")
|
405 |
-
|
406 |
-
def _update_completion_status(self) -> None:
|
407 |
-
"""Update the completion status based on collected information."""
|
408 |
-
status = {}
|
409 |
-
for section, required_fields in self.required_sections.items():
|
410 |
-
if section in self.state.collected_sections:
|
411 |
-
profile_section = self.state.collected_sections[section]
|
412 |
-
fields_present = sum(
|
413 |
-
1 for field in required_fields
|
414 |
-
if field in profile_section.data
|
415 |
-
)
|
416 |
-
confidence_factor = profile_section.confidence
|
417 |
-
status[section] = (fields_present / len(required_fields)) * confidence_factor
|
418 |
-
else:
|
419 |
-
status[section] = 0.0
|
420 |
-
|
421 |
-
self.state.completion_status = status
|
422 |
-
self.logger.info(f"Updated completion status: {status}")
|
423 |
-
|
424 |
-
def _get_missing_information(self) -> List[str]:
|
425 |
-
"""Identify missing required information."""
|
426 |
-
missing = []
|
427 |
-
for section, required_fields in self.required_sections.items():
|
428 |
-
if section not in self.state.collected_sections:
|
429 |
-
missing.extend([f"{section}.{field}" for field in required_fields])
|
430 |
-
else:
|
431 |
-
profile_section = self.state.collected_sections[section]
|
432 |
-
missing.extend([
|
433 |
-
f"{section}.{field}"
|
434 |
-
for field in required_fields
|
435 |
-
if field not in profile_section.data
|
436 |
-
])
|
437 |
-
return missing
|
438 |
-
|
439 |
-
async def process_message(self, message: str, api_key: str) -> Dict[str, Any]:
|
440 |
-
"""Process a user message through both conversation and extraction phases."""
|
441 |
-
if not self._api_key:
|
442 |
-
self._initialize_client(api_key)
|
443 |
-
|
444 |
-
try:
|
445 |
-
# Phase 1: Conversation
|
446 |
-
self.state.conversation_history.append({"role": "user", "content": message})
|
447 |
-
ai_response = await self._get_conversation_response(message)
|
448 |
-
self.state.conversation_history.append({"role": "assistant", "content": ai_response})
|
449 |
|
450 |
-
#
|
451 |
-
extracted_sections = await self._extract_information()
|
452 |
-
|
453 |
-
# Update state with new information
|
454 |
-
self.state.collected_sections.update(extracted_sections)
|
455 |
-
self._update_completion_status()
|
456 |
-
|
457 |
-
# Track extraction history
|
458 |
-
self.state.extraction_history.append({
|
459 |
-
"timestamp": datetime.now().isoformat(),
|
460 |
-
"sections_extracted": list(extracted_sections.keys())
|
461 |
-
})
|
462 |
-
|
463 |
-
return {
|
464 |
-
"response": ai_response,
|
465 |
-
"extracted_sections": {
|
466 |
-
category: {
|
467 |
-
"data": section.data,
|
468 |
-
"confidence": section.confidence,
|
469 |
-
"inferred_fields": section.inferred_fields
|
470 |
-
}
|
471 |
-
for category, section in extracted_sections.items()
|
472 |
-
},
|
473 |
-
"completion_status": self.state.completion_status,
|
474 |
-
"missing_information": self._get_missing_information()
|
475 |
-
}
|
476 |
-
|
477 |
-
except Exception as e:
|
478 |
-
self.logger.error(f"Error processing message: {str(e)}")
|
479 |
-
return {
|
480 |
-
"error": str(e),
|
481 |
-
"completion_status": self.state.completion_status
|
482 |
-
}
|
483 |
-
|
484 |
-
def generate_profile(self) -> Dict[str, Any]:
|
485 |
-
"""Generate the final structured profile with all collected information."""
|
486 |
-
try:
|
487 |
profile = {
|
488 |
-
"profile_data":
|
489 |
-
category: {
|
490 |
-
"data": section.data,
|
491 |
-
"confidence": section.confidence,
|
492 |
-
"inferred_fields": section.inferred_fields,
|
493 |
-
"metadata": section.metadata
|
494 |
-
}
|
495 |
-
for category, section in self.state.collected_sections.items()
|
496 |
-
},
|
497 |
"metadata": {
|
498 |
"generated_at": datetime.now().isoformat(),
|
499 |
-
"
|
500 |
-
"missing_information": self._get_missing_information(),
|
501 |
-
"conversation_length": len(self.state.conversation_history),
|
502 |
-
"extraction_history": self.state.extraction_history
|
503 |
}
|
504 |
}
|
505 |
|
506 |
-
# Save
|
507 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
508 |
filename = f"profile_{timestamp}.json"
|
509 |
with open(filename, 'w', encoding='utf-8') as f:
|
510 |
-
json.dump(profile, f, indent=2
|
511 |
|
512 |
-
self.logger.info(f"Generated profile saved to {filename}")
|
513 |
return {
|
514 |
"profile": profile,
|
515 |
-
"filename": filename
|
516 |
-
"status": "success"
|
517 |
}
|
518 |
|
519 |
except Exception as e:
|
520 |
-
|
521 |
-
return {
|
522 |
-
"error": str(e),
|
523 |
-
"status": "error"
|
524 |
-
}
|
525 |
|
526 |
-
def create_gradio_interface()
|
527 |
-
"""Create the Gradio interface
|
528 |
builder = ProfileBuilder()
|
529 |
|
530 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
@@ -535,78 +136,53 @@ def create_gradio_interface() -> gr.Blocks:
|
|
535 |
api_key = gr.Textbox(
|
536 |
label="OpenAI API Key",
|
537 |
type="password",
|
538 |
-
placeholder="Enter your OpenAI API key
|
539 |
)
|
540 |
|
541 |
-
chatbot = gr.Chatbot(
|
542 |
-
label="Conversation",
|
543 |
-
height=400
|
544 |
-
)
|
545 |
|
546 |
with gr.Row():
|
547 |
msg = gr.Textbox(
|
548 |
label="Message",
|
549 |
placeholder="Chat with LOSS DOG..."
|
550 |
)
|
551 |
-
send = gr.Button("Send"
|
552 |
|
553 |
with gr.Column(scale=1):
|
554 |
-
|
555 |
-
with gr.Tab("Extracted Info"):
|
556 |
-
extracted_info = gr.JSON(
|
557 |
-
label="Extracted Information",
|
558 |
-
show_label=True
|
559 |
-
)
|
560 |
-
with gr.Tab("Progress"):
|
561 |
-
completion = gr.JSON(
|
562 |
-
label="Completion Status",
|
563 |
-
show_label=True
|
564 |
-
)
|
565 |
-
missing = gr.JSON(
|
566 |
-
label="Missing Information",
|
567 |
-
show_label=True
|
568 |
-
)
|
569 |
-
|
570 |
-
generate_btn = gr.Button("Generate Profile", variant="secondary")
|
571 |
profile_output = gr.JSON(label="Generated Profile")
|
572 |
download_btn = gr.File(label="Download Profile")
|
573 |
|
574 |
# Event handlers
|
575 |
-
async def on_message(message: str, history: List[List[str]], key: str)
|
576 |
if not message.strip():
|
577 |
-
return history, None
|
578 |
|
579 |
result = await builder.process_message(message, key)
|
580 |
|
581 |
if "error" in result:
|
582 |
-
return history,
|
583 |
|
584 |
history = history + [[message, result["response"]]]
|
585 |
-
|
586 |
-
return (
|
587 |
-
history,
|
588 |
-
result["extracted_sections"],
|
589 |
-
result["completion_status"],
|
590 |
-
result["missing_information"]
|
591 |
-
)
|
592 |
|
593 |
-
def on_generate()
|
594 |
-
result = builder.generate_profile()
|
595 |
-
if
|
596 |
-
return
|
597 |
-
return
|
598 |
|
599 |
# Bind events
|
600 |
msg.submit(
|
601 |
on_message,
|
602 |
inputs=[msg, chatbot, api_key],
|
603 |
-
outputs=[chatbot,
|
604 |
-
).then(lambda: "", None, msg)
|
605 |
|
606 |
send.click(
|
607 |
on_message,
|
608 |
inputs=[msg, chatbot, api_key],
|
609 |
-
outputs=[chatbot,
|
610 |
).then(lambda: "", None, msg)
|
611 |
|
612 |
generate_btn.click(
|
@@ -618,8 +194,4 @@ def create_gradio_interface() -> gr.Blocks:
|
|
618 |
|
619 |
if __name__ == "__main__":
|
620 |
demo = create_gradio_interface()
|
621 |
-
demo.launch(
|
622 |
-
server_name="0.0.0.0",
|
623 |
-
server_port=7860,
|
624 |
-
share=True
|
625 |
-
)
|
|
|
1 |
import json
|
2 |
import logging
|
|
|
3 |
from datetime import datetime
|
4 |
+
from typing import Dict, List, Optional, Any
|
|
|
|
|
|
|
5 |
import gradio as gr
|
6 |
+
import openai
|
7 |
|
8 |
+
# Configure logging
|
9 |
+
logging.basicConfig(level=logging.INFO)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
+
# System prompts
|
13 |
+
CONVERSATION_PROMPT = """You are LOSS DOG, a professional profile builder. Your goal is to have natural conversations
|
14 |
+
with users to gather information about their professional background across 9 categories:
|
15 |
+
|
16 |
+
1. Work History & Experience
|
17 |
+
2. Salary & Compensation
|
18 |
+
3. Skills & Certifications
|
19 |
+
4. Education & Learning
|
20 |
+
5. Personal Branding & Online Presence
|
21 |
+
6. Achievements & Awards
|
22 |
+
7. Social Proof & Networking
|
23 |
+
8. Project Contributions & Leadership
|
24 |
+
9. Work Performance & Impact Metrics
|
25 |
+
|
26 |
+
Be friendly and conversational. Ask follow-up questions naturally. When appropriate, guide users to share more details
|
27 |
+
but respect their boundaries. Once you believe you have gathered sufficient information (or if the user indicates they
|
28 |
+
have nothing more to share), let them know they can click 'Generate Profile' to proceed.
|
29 |
+
"""
|
30 |
+
|
31 |
+
EXTRACTION_PROMPT = """You are LOSS DOG's data processing system. Analyze the provided conversation and extract
|
32 |
+
structured information into the following categories:
|
33 |
+
|
34 |
+
1. Work History & Experience: Job titles, companies, industries, locations, adaptability, promotions
|
35 |
+
2. Salary & Compensation: Base salary, bonuses, equity, benefits (if shared)
|
36 |
+
3. Skills & Certifications: Technical skills, languages, certifications, licenses
|
37 |
+
4. Education & Learning: Degrees, institutions, courses, research
|
38 |
+
5. Personal Branding: Online presence, portfolio, blockchain projects, social media
|
39 |
+
6. Achievements & Awards: Industry recognition, hackathons, creative projects
|
40 |
+
7. Social Proof: Mentors, references, memberships, conferences
|
41 |
+
8. Project Contributions: Major projects, open-source, patents, impact
|
42 |
+
9. Performance Metrics: KPIs, revenue impact, growth metrics
|
43 |
+
|
44 |
+
Format the output as clean, structured JSON. Include confidence scores for each extracted piece of information.
|
45 |
+
Mark any inferred information clearly."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
class ProfileBuilder:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def __init__(self):
|
49 |
+
self.conversation_history = []
|
50 |
+
self.api_key = None
|
51 |
+
|
52 |
+
async def process_message(self, message: str, api_key: str) -> Dict[str, Any]:
|
53 |
+
"""Process a user message through conversation phase."""
|
54 |
+
try:
|
55 |
+
if not self.api_key:
|
56 |
+
self.api_key = api_key
|
57 |
+
openai.api_key = api_key
|
|
|
|
|
|
|
58 |
|
59 |
+
# Add message to history
|
60 |
+
self.conversation_history.append({"role": "user", "content": message})
|
61 |
+
|
62 |
+
# Get AI response
|
63 |
+
response = await openai.ChatCompletion.acreate(
|
64 |
+
model="gpt-4o-mini",
|
65 |
+
messages=[
|
66 |
+
{"role": "system", "content": CONVERSATION_PROMPT},
|
67 |
+
*self.conversation_history
|
68 |
+
],
|
69 |
+
temperature=0.7
|
70 |
+
)
|
71 |
+
|
72 |
+
ai_message = response.choices[0].message.content
|
73 |
+
self.conversation_history.append({"role": "assistant", "content": ai_message})
|
74 |
+
|
75 |
+
return {"response": ai_message}
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
except Exception as e:
|
78 |
+
logger.error(f"Error processing message: {str(e)}")
|
79 |
+
return {"error": str(e)}
|
80 |
|
81 |
+
async def generate_profile(self) -> Dict[str, Any]:
|
82 |
+
"""Process conversation history into structured profile."""
|
83 |
try:
|
84 |
+
# Convert conversation history to text
|
85 |
conversation_text = "\n".join(
|
86 |
f"{msg['role']}: {msg['content']}"
|
87 |
+
for msg in self.conversation_history
|
88 |
)
|
89 |
|
90 |
+
# Extract structured information
|
|
|
|
|
|
|
|
|
91 |
response = await openai.ChatCompletion.acreate(
|
92 |
model="gpt-4o-mini",
|
93 |
+
messages=[
|
94 |
+
{"role": "system", "content": EXTRACTION_PROMPT},
|
95 |
+
{"role": "user", "content": f"Extract profile information from this conversation:\n\n{conversation_text}"}
|
96 |
+
],
|
97 |
+
temperature=0.3
|
98 |
)
|
99 |
|
100 |
+
# Parse the structured response
|
101 |
+
profile_data = json.loads(response.choices[0].message.content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
# Add metadata
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
profile = {
|
105 |
+
"profile_data": profile_data,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
"metadata": {
|
107 |
"generated_at": datetime.now().isoformat(),
|
108 |
+
"conversation_length": len(self.conversation_history)
|
|
|
|
|
|
|
109 |
}
|
110 |
}
|
111 |
|
112 |
+
# Save to file
|
113 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
114 |
filename = f"profile_{timestamp}.json"
|
115 |
with open(filename, 'w', encoding='utf-8') as f:
|
116 |
+
json.dump(profile, f, indent=2)
|
117 |
|
|
|
118 |
return {
|
119 |
"profile": profile,
|
120 |
+
"filename": filename
|
|
|
121 |
}
|
122 |
|
123 |
except Exception as e:
|
124 |
+
logger.error(f"Error generating profile: {str(e)}")
|
125 |
+
return {"error": str(e)}
|
|
|
|
|
|
|
126 |
|
127 |
+
def create_gradio_interface():
|
128 |
+
"""Create the Gradio interface."""
|
129 |
builder = ProfileBuilder()
|
130 |
|
131 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
|
136 |
api_key = gr.Textbox(
|
137 |
label="OpenAI API Key",
|
138 |
type="password",
|
139 |
+
placeholder="Enter your OpenAI API key"
|
140 |
)
|
141 |
|
142 |
+
chatbot = gr.Chatbot(label="Conversation")
|
|
|
|
|
|
|
143 |
|
144 |
with gr.Row():
|
145 |
msg = gr.Textbox(
|
146 |
label="Message",
|
147 |
placeholder="Chat with LOSS DOG..."
|
148 |
)
|
149 |
+
send = gr.Button("Send")
|
150 |
|
151 |
with gr.Column(scale=1):
|
152 |
+
generate_btn = gr.Button("Generate Profile")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
profile_output = gr.JSON(label="Generated Profile")
|
154 |
download_btn = gr.File(label="Download Profile")
|
155 |
|
156 |
# Event handlers
|
157 |
+
async def on_message(message: str, history: List[List[str]], key: str):
|
158 |
if not message.strip():
|
159 |
+
return history, None
|
160 |
|
161 |
result = await builder.process_message(message, key)
|
162 |
|
163 |
if "error" in result:
|
164 |
+
return history, {"error": result["error"]}
|
165 |
|
166 |
history = history + [[message, result["response"]]]
|
167 |
+
return history, None
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
+
async def on_generate():
|
170 |
+
result = await builder.generate_profile()
|
171 |
+
if "error" in result:
|
172 |
+
return {"error": result["error"]}, None
|
173 |
+
return result["profile"], result["filename"]
|
174 |
|
175 |
# Bind events
|
176 |
msg.submit(
|
177 |
on_message,
|
178 |
inputs=[msg, chatbot, api_key],
|
179 |
+
outputs=[chatbot, profile_output]
|
180 |
+
).then(lambda: "", None, msg)
|
181 |
|
182 |
send.click(
|
183 |
on_message,
|
184 |
inputs=[msg, chatbot, api_key],
|
185 |
+
outputs=[chatbot, profile_output]
|
186 |
).then(lambda: "", None, msg)
|
187 |
|
188 |
generate_btn.click(
|
|
|
194 |
|
195 |
if __name__ == "__main__":
|
196 |
demo = create_gradio_interface()
|
197 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|