Update app.py
Browse files
app.py
CHANGED
@@ -11,8 +11,7 @@ import io
|
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
CONVERSATION_PROMPT = """You are LOSS DOG, a professional profile builder. Your goal is to have natural conversations
|
17 |
with users to gather information about their professional background across 9 categories:
|
18 |
|
@@ -137,42 +136,47 @@ Return the data in this exact structure:
|
|
137 |
}
|
138 |
|
139 |
IMPORTANT: Return ONLY the JSON. Do not add any explanation text."""
|
|
|
140 |
class ProfileBuilder:
|
141 |
def __init__(self):
|
142 |
-
self.conversation_history = []
|
143 |
self.client = None
|
144 |
self.pdf_text = None
|
145 |
|
146 |
def _initialize_client(self, api_key: str) -> None:
|
147 |
"""Initialize OpenAI client if not already initialized"""
|
148 |
-
if not
|
149 |
-
|
150 |
-
|
151 |
-
self.client = AsyncOpenAI(api_key=api_key)
|
152 |
|
153 |
-
async def process_message(self, message: str, api_key: str) -> Dict[str, Any]:
|
154 |
-
"""Process a chat message"""
|
155 |
try:
|
156 |
# Initialize client if needed
|
157 |
self._initialize_client(api_key)
|
158 |
-
|
159 |
-
#
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
# Get AI response
|
163 |
completion = await self.client.chat.completions.create(
|
164 |
-
model="gpt-
|
165 |
messages=[
|
166 |
{"role": "system", "content": CONVERSATION_PROMPT},
|
167 |
-
*
|
168 |
],
|
169 |
temperature=0.7
|
170 |
)
|
171 |
|
172 |
-
# Extract
|
173 |
ai_message = completion.choices[0].message.content
|
174 |
-
self.conversation_history.append({"role": "assistant", "content": ai_message})
|
175 |
-
|
176 |
return {"response": ai_message}
|
177 |
|
178 |
except Exception as e:
|
@@ -187,7 +191,7 @@ class ProfileBuilder:
|
|
187 |
text = ""
|
188 |
for page in pdf_reader.pages:
|
189 |
text += page.extract_text()
|
190 |
-
self.pdf_text = text
|
191 |
return text
|
192 |
except Exception as e:
|
193 |
logger.error(f"PDF extraction error: {str(e)}")
|
@@ -204,7 +208,7 @@ class ProfileBuilder:
|
|
204 |
|
205 |
# Process with AI
|
206 |
completion = await self.client.chat.completions.create(
|
207 |
-
model="gpt-
|
208 |
messages=[
|
209 |
{"role": "system", "content": EXTRACTION_PROMPT},
|
210 |
{"role": "user", "content": f"Extract profile information from this resume:\n\n{resume_text}"}
|
@@ -231,18 +235,14 @@ class ProfileBuilder:
|
|
231 |
logger.error(f"PDF processing error: {str(e)}")
|
232 |
return {"error": str(e)}
|
233 |
|
234 |
-
async def generate_profile(self) -> tuple[Dict[str, Any], Optional[str]]:
|
235 |
"""Generate profile from conversation or PDF"""
|
236 |
try:
|
237 |
-
|
238 |
-
raise ValueError("OpenAI client not initialized")
|
239 |
|
240 |
# Determine source and prepare content
|
241 |
-
if
|
242 |
-
content = "\n".join(
|
243 |
-
f"{msg['role']}: {msg['content']}"
|
244 |
-
for msg in self.conversation_history
|
245 |
-
)
|
246 |
source = "conversation"
|
247 |
elif self.pdf_text:
|
248 |
content = self.pdf_text
|
@@ -252,7 +252,7 @@ class ProfileBuilder:
|
|
252 |
|
253 |
# Get AI extraction
|
254 |
completion = await self.client.chat.completions.create(
|
255 |
-
model="gpt-
|
256 |
messages=[
|
257 |
{"role": "system", "content": EXTRACTION_PROMPT},
|
258 |
{"role": "user", "content": f"Extract profile information from this {source}:\n\n{content}"}
|
@@ -340,7 +340,7 @@ def create_gradio_interface():
|
|
340 |
if not message.strip():
|
341 |
return history, None, None
|
342 |
|
343 |
-
result = await builder.process_message(message, key)
|
344 |
|
345 |
if "error" in result:
|
346 |
return history, {"error": result["error"]}, None
|
@@ -367,8 +367,8 @@ def create_gradio_interface():
|
|
367 |
except Exception as e:
|
368 |
return {"error": str(e)}, None
|
369 |
|
370 |
-
async def on_generate():
|
371 |
-
profile, filename = await builder.generate_profile()
|
372 |
if "error" in profile:
|
373 |
return {"error": profile["error"]}, None
|
374 |
return profile["profile_data"], filename
|
@@ -377,13 +377,13 @@ def create_gradio_interface():
|
|
377 |
msg.submit(
|
378 |
on_message,
|
379 |
inputs=[msg, chatbot, api_key],
|
380 |
-
outputs=[chatbot, profile_output,
|
381 |
)
|
382 |
|
383 |
send.click(
|
384 |
on_message,
|
385 |
inputs=[msg, chatbot, api_key],
|
386 |
-
outputs=[chatbot, profile_output,
|
387 |
)
|
388 |
|
389 |
process_pdf_btn.click(
|
@@ -394,6 +394,7 @@ def create_gradio_interface():
|
|
394 |
|
395 |
generate_btn.click(
|
396 |
on_generate,
|
|
|
397 |
outputs=[profile_output, download_btn]
|
398 |
)
|
399 |
|
|
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
14 |
+
# Prompts
|
|
|
15 |
CONVERSATION_PROMPT = """You are LOSS DOG, a professional profile builder. Your goal is to have natural conversations
|
16 |
with users to gather information about their professional background across 9 categories:
|
17 |
|
|
|
136 |
}
|
137 |
|
138 |
IMPORTANT: Return ONLY the JSON. Do not add any explanation text."""
|
139 |
+
|
140 |
class ProfileBuilder:
|
141 |
def __init__(self):
|
|
|
142 |
self.client = None
|
143 |
self.pdf_text = None
|
144 |
|
145 |
def _initialize_client(self, api_key: str) -> None:
|
146 |
"""Initialize OpenAI client if not already initialized"""
|
147 |
+
if not api_key.startswith("sk-"):
|
148 |
+
raise ValueError("Invalid API key format")
|
149 |
+
self.client = AsyncOpenAI(api_key=api_key)
|
|
|
150 |
|
151 |
+
async def process_message(self, message: str, history: List[List[str]], api_key: str) -> Dict[str, Any]:
|
152 |
+
"""Process a chat message using conversation history from Gradio's state"""
|
153 |
try:
|
154 |
# Initialize client if needed
|
155 |
self._initialize_client(api_key)
|
156 |
+
|
157 |
+
# Convert Gradio history format to OpenAI message format
|
158 |
+
conversation_history = []
|
159 |
+
for human, assistant in history:
|
160 |
+
conversation_history.extend([
|
161 |
+
{"role": "user", "content": human},
|
162 |
+
{"role": "assistant", "content": assistant}
|
163 |
+
])
|
164 |
+
|
165 |
+
# Add current message
|
166 |
+
conversation_history.append({"role": "user", "content": message})
|
167 |
|
168 |
# Get AI response
|
169 |
completion = await self.client.chat.completions.create(
|
170 |
+
model="gpt-4-0125-preview",
|
171 |
messages=[
|
172 |
{"role": "system", "content": CONVERSATION_PROMPT},
|
173 |
+
*conversation_history
|
174 |
],
|
175 |
temperature=0.7
|
176 |
)
|
177 |
|
178 |
+
# Extract response
|
179 |
ai_message = completion.choices[0].message.content
|
|
|
|
|
180 |
return {"response": ai_message}
|
181 |
|
182 |
except Exception as e:
|
|
|
191 |
text = ""
|
192 |
for page in pdf_reader.pages:
|
193 |
text += page.extract_text()
|
194 |
+
self.pdf_text = text
|
195 |
return text
|
196 |
except Exception as e:
|
197 |
logger.error(f"PDF extraction error: {str(e)}")
|
|
|
208 |
|
209 |
# Process with AI
|
210 |
completion = await self.client.chat.completions.create(
|
211 |
+
model="gpt-4-0125-preview",
|
212 |
messages=[
|
213 |
{"role": "system", "content": EXTRACTION_PROMPT},
|
214 |
{"role": "user", "content": f"Extract profile information from this resume:\n\n{resume_text}"}
|
|
|
235 |
logger.error(f"PDF processing error: {str(e)}")
|
236 |
return {"error": str(e)}
|
237 |
|
238 |
+
async def generate_profile(self, history: List[List[str]], api_key: str) -> tuple[Dict[str, Any], Optional[str]]:
|
239 |
"""Generate profile from conversation or PDF"""
|
240 |
try:
|
241 |
+
self._initialize_client(api_key)
|
|
|
242 |
|
243 |
# Determine source and prepare content
|
244 |
+
if history:
|
245 |
+
content = "\n".join(f"User: {msg[0]}\nAssistant: {msg[1]}" for msg in history)
|
|
|
|
|
|
|
246 |
source = "conversation"
|
247 |
elif self.pdf_text:
|
248 |
content = self.pdf_text
|
|
|
252 |
|
253 |
# Get AI extraction
|
254 |
completion = await self.client.chat.completions.create(
|
255 |
+
model="gpt-4-0125-preview",
|
256 |
messages=[
|
257 |
{"role": "system", "content": EXTRACTION_PROMPT},
|
258 |
{"role": "user", "content": f"Extract profile information from this {source}:\n\n{content}"}
|
|
|
340 |
if not message.strip():
|
341 |
return history, None, None
|
342 |
|
343 |
+
result = await builder.process_message(message, history, key)
|
344 |
|
345 |
if "error" in result:
|
346 |
return history, {"error": result["error"]}, None
|
|
|
367 |
except Exception as e:
|
368 |
return {"error": str(e)}, None
|
369 |
|
370 |
+
async def on_generate(history: List[List[str]], key: str):
|
371 |
+
profile, filename = await builder.generate_profile(history, key)
|
372 |
if "error" in profile:
|
373 |
return {"error": profile["error"]}, None
|
374 |
return profile["profile_data"], filename
|
|
|
377 |
msg.submit(
|
378 |
on_message,
|
379 |
inputs=[msg, chatbot, api_key],
|
380 |
+
outputs=[chatbot, profile_output, download_btn]
|
381 |
)
|
382 |
|
383 |
send.click(
|
384 |
on_message,
|
385 |
inputs=[msg, chatbot, api_key],
|
386 |
+
outputs=[chatbot, profile_output, download_btn]
|
387 |
)
|
388 |
|
389 |
process_pdf_btn.click(
|
|
|
394 |
|
395 |
generate_btn.click(
|
396 |
on_generate,
|
397 |
+
inputs=[chatbot, api_key],
|
398 |
outputs=[profile_output, download_btn]
|
399 |
)
|
400 |
|