Update app.py
Browse files
app.py
CHANGED
|
@@ -3,13 +3,12 @@ import logging
|
|
| 3 |
from datetime import datetime
|
| 4 |
from typing import Dict, List, Optional, Any
|
| 5 |
import gradio as gr
|
| 6 |
-
from openai import AsyncOpenAI
|
| 7 |
|
| 8 |
# Configure logging
|
| 9 |
logging.basicConfig(level=logging.INFO)
|
| 10 |
logger = logging.getLogger(__name__)
|
| 11 |
|
| 12 |
-
# System prompts remain the same as before
|
| 13 |
CONVERSATION_PROMPT = """You are LOSS DOG, a professional profile builder. Your goal is to have natural conversations
|
| 14 |
with users to gather information about their professional background across 9 categories:
|
| 15 |
|
|
@@ -28,16 +27,9 @@ but respect their boundaries. Once you believe you have gathered sufficient info
|
|
| 28 |
have nothing more to share), let them know they can click 'Generate Profile' to proceed.
|
| 29 |
"""
|
| 30 |
|
| 31 |
-
EXTRACTION_PROMPT = """You are a professional information extraction system. Your task is to
|
| 32 |
|
| 33 |
-
|
| 34 |
-
1. Read entire conversation history
|
| 35 |
-
2. Extract explicit and implicit information
|
| 36 |
-
3. Make reasonable inferences when appropriate
|
| 37 |
-
4. Structure data according to defined schema
|
| 38 |
-
5. Include confidence scores for all extracted information
|
| 39 |
-
|
| 40 |
-
OUTPUT SCHEMA:
|
| 41 |
{
|
| 42 |
"work_history_experience": {
|
| 43 |
"positions": [
|
|
@@ -48,78 +40,50 @@ OUTPUT SCHEMA:
|
|
| 48 |
"location": string,
|
| 49 |
"employment_type": string,
|
| 50 |
"adaptability": {
|
| 51 |
-
"career_shifts":
|
| 52 |
-
"upskilling":
|
| 53 |
},
|
| 54 |
-
"promotions":
|
| 55 |
-
"confidence":
|
| 56 |
}
|
| 57 |
]
|
| 58 |
},
|
| 59 |
"salary_compensation": {
|
| 60 |
"history": [
|
| 61 |
{
|
| 62 |
-
"base_salary": number
|
| 63 |
-
"bonus_structure": string
|
| 64 |
"stock_options": {
|
| 65 |
"type": string,
|
| 66 |
"details": string
|
| 67 |
},
|
| 68 |
-
"commission":
|
| 69 |
"benefits": {
|
| 70 |
"health": string,
|
| 71 |
"pto": string,
|
| 72 |
"retirement": string,
|
| 73 |
-
"other":
|
| 74 |
},
|
| 75 |
-
"confidence":
|
| 76 |
}
|
| 77 |
]
|
| 78 |
},
|
| 79 |
"skills_certifications": {
|
| 80 |
-
"hard_skills":
|
| 81 |
-
"soft_skills":
|
| 82 |
-
"
|
| 83 |
-
"
|
| 84 |
-
"certifications": [
|
| 85 |
-
{
|
| 86 |
-
"name": string,
|
| 87 |
-
"issuer": string,
|
| 88 |
-
"date": string,
|
| 89 |
-
"confidence": float
|
| 90 |
-
}
|
| 91 |
-
],
|
| 92 |
-
"licenses": [
|
| 93 |
-
{
|
| 94 |
-
"type": string,
|
| 95 |
-
"issuer": string,
|
| 96 |
-
"valid_until": string,
|
| 97 |
-
"confidence": float
|
| 98 |
-
}
|
| 99 |
-
]
|
| 100 |
},
|
| 101 |
"education_learning": {
|
| 102 |
-
"formal_education": [
|
| 103 |
-
{
|
| 104 |
-
"degree": string,
|
| 105 |
-
"institution": string,
|
| 106 |
-
"gpa": number | null,
|
| 107 |
-
"research": string[],
|
| 108 |
-
"period": {
|
| 109 |
-
"start": string,
|
| 110 |
-
"end": string | null
|
| 111 |
-
},
|
| 112 |
-
"confidence": float
|
| 113 |
-
}
|
| 114 |
-
],
|
| 115 |
"online_courses": [],
|
| 116 |
"executive_education": []
|
| 117 |
},
|
| 118 |
"personal_branding": {
|
| 119 |
"portfolio": {
|
| 120 |
-
"github":
|
| 121 |
-
"behance":
|
| 122 |
-
"other":
|
| 123 |
},
|
| 124 |
"blog_posts": [],
|
| 125 |
"blockchain_projects": {
|
|
@@ -127,7 +91,6 @@ OUTPUT SCHEMA:
|
|
| 127 |
"defi": [],
|
| 128 |
"dapps": []
|
| 129 |
},
|
| 130 |
-
"public_speaking": [],
|
| 131 |
"social_media": {
|
| 132 |
"platforms": [],
|
| 133 |
"influence_metrics": {}
|
|
@@ -145,14 +108,7 @@ OUTPUT SCHEMA:
|
|
| 145 |
"social_proof_networking": {
|
| 146 |
"mentors": [],
|
| 147 |
"references": [],
|
| 148 |
-
"memberships": [
|
| 149 |
-
{
|
| 150 |
-
"organization": string,
|
| 151 |
-
"type": string,
|
| 152 |
-
"period": string,
|
| 153 |
-
"confidence": float
|
| 154 |
-
}
|
| 155 |
-
],
|
| 156 |
"conference_engagement": []
|
| 157 |
},
|
| 158 |
"project_contributions": {
|
|
@@ -162,8 +118,8 @@ OUTPUT SCHEMA:
|
|
| 162 |
"patents": [],
|
| 163 |
"impact": {
|
| 164 |
"description": string,
|
| 165 |
-
"metrics":
|
| 166 |
-
"confidence":
|
| 167 |
}
|
| 168 |
},
|
| 169 |
"work_performance_metrics": {
|
|
@@ -175,40 +131,7 @@ OUTPUT SCHEMA:
|
|
| 175 |
}
|
| 176 |
}
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
1. Process systematically:
|
| 181 |
-
- Analyze conversation thoroughly
|
| 182 |
-
- Look for both direct statements and implied information
|
| 183 |
-
- Cross-reference information across different parts of conversation
|
| 184 |
-
- Make reasonable inferences when appropriate
|
| 185 |
-
|
| 186 |
-
2. For each piece of information:
|
| 187 |
-
- Clean and standardize the data
|
| 188 |
-
- Assign confidence scores (0.0-1.0)
|
| 189 |
-
- Mark inferred information
|
| 190 |
-
- Include source context where relevant
|
| 191 |
-
|
| 192 |
-
3. Quality requirements:
|
| 193 |
-
- Use consistent date formats (YYYY-MM-DD)
|
| 194 |
-
- Standardize company names and titles
|
| 195 |
-
- Use empty arrays [] for missing information
|
| 196 |
-
- Never use null for array fields
|
| 197 |
-
- Include confidence scores for all extracted data
|
| 198 |
-
|
| 199 |
-
4. Handle missing information:
|
| 200 |
-
- Use empty arrays [] rather than null
|
| 201 |
-
- Mark inferred information clearly
|
| 202 |
-
- Include partial information when complete data isn't available
|
| 203 |
-
- Note uncertainty in confidence scores
|
| 204 |
-
|
| 205 |
-
Remember to:
|
| 206 |
-
- Process each category thoroughly
|
| 207 |
-
- Cross-reference information for consistency
|
| 208 |
-
- Make reasonable inferences when appropriate
|
| 209 |
-
- Maintain consistent formatting
|
| 210 |
-
- Include all required fields even if empty
|
| 211 |
-
"""
|
| 212 |
|
| 213 |
class ProfileBuilder:
|
| 214 |
def __init__(self):
|
|
@@ -216,21 +139,17 @@ class ProfileBuilder:
|
|
| 216 |
self.client = None
|
| 217 |
|
| 218 |
def _initialize_client(self, api_key: str) -> None:
|
| 219 |
-
"""Initialize AsyncOpenAI client with API key."""
|
| 220 |
if not api_key.startswith("sk-"):
|
| 221 |
raise ValueError("Invalid API key format")
|
| 222 |
self.client = AsyncOpenAI(api_key=api_key)
|
| 223 |
|
| 224 |
async def process_message(self, message: str, api_key: str) -> Dict[str, Any]:
|
| 225 |
-
"""Process a user message through conversation phase."""
|
| 226 |
try:
|
| 227 |
if not self.client:
|
| 228 |
self._initialize_client(api_key)
|
| 229 |
|
| 230 |
-
# Add message to history
|
| 231 |
self.conversation_history.append({"role": "user", "content": message})
|
| 232 |
|
| 233 |
-
# Get AI response - properly awaited
|
| 234 |
completion = await self.client.chat.completions.create(
|
| 235 |
model="gpt-4o-mini",
|
| 236 |
messages=[
|
|
@@ -250,18 +169,15 @@ class ProfileBuilder:
|
|
| 250 |
return {"error": str(e)}
|
| 251 |
|
| 252 |
async def generate_profile(self) -> Dict[str, Any]:
|
| 253 |
-
"""Process conversation history into structured profile."""
|
| 254 |
try:
|
| 255 |
if not self.client:
|
| 256 |
raise ValueError("OpenAI client not initialized")
|
| 257 |
|
| 258 |
-
# Convert conversation history to text
|
| 259 |
conversation_text = "\n".join(
|
| 260 |
f"{msg['role']}: {msg['content']}"
|
| 261 |
for msg in self.conversation_history
|
| 262 |
)
|
| 263 |
|
| 264 |
-
# Extract structured information - properly awaited
|
| 265 |
completion = await self.client.chat.completions.create(
|
| 266 |
model="gpt-4o-mini",
|
| 267 |
messages=[
|
|
@@ -271,21 +187,12 @@ class ProfileBuilder:
|
|
| 271 |
temperature=0.3
|
| 272 |
)
|
| 273 |
|
| 274 |
-
#
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
# Attempt to parse the JSON
|
| 279 |
-
try:
|
| 280 |
-
profile_data = json.loads(raw_output)
|
| 281 |
-
except json.JSONDecodeError as decode_error:
|
| 282 |
-
logger.error("Failed to decode JSON. The output may not be valid JSON.")
|
| 283 |
-
profile_data = None # Indicate failure to parse
|
| 284 |
|
| 285 |
-
# Build the profile output including metadata and raw output
|
| 286 |
profile = {
|
| 287 |
"profile_data": profile_data,
|
| 288 |
-
"raw_output": raw_output,
|
| 289 |
"metadata": {
|
| 290 |
"generated_at": datetime.now().isoformat(),
|
| 291 |
"conversation_length": len(self.conversation_history)
|
|
@@ -298,17 +205,16 @@ class ProfileBuilder:
|
|
| 298 |
with open(filename, 'w', encoding='utf-8') as f:
|
| 299 |
json.dump(profile, f, indent=2)
|
| 300 |
|
| 301 |
-
return
|
| 302 |
-
"profile": profile,
|
| 303 |
-
"filename": filename
|
| 304 |
-
}
|
| 305 |
|
|
|
|
|
|
|
|
|
|
| 306 |
except Exception as e:
|
| 307 |
logger.error(f"Error generating profile: {str(e)}")
|
| 308 |
-
return {"error": str(e)}
|
| 309 |
|
| 310 |
def create_gradio_interface():
|
| 311 |
-
"""Create the Gradio interface."""
|
| 312 |
builder = ProfileBuilder()
|
| 313 |
|
| 314 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
@@ -333,13 +239,9 @@ def create_gradio_interface():
|
|
| 333 |
|
| 334 |
with gr.Column(scale=1):
|
| 335 |
generate_btn = gr.Button("Generate Profile")
|
| 336 |
-
|
| 337 |
-
profile_output = gr.JSON(label="Generated Profile (Parsed JSON)")
|
| 338 |
-
# Markdown output to always show the raw AI output
|
| 339 |
-
raw_output_markdown = gr.Markdown(label="Raw Output from AI")
|
| 340 |
download_btn = gr.File(label="Download Profile")
|
| 341 |
|
| 342 |
-
# Event handlers
|
| 343 |
async def on_message(message: str, history: List[List[str]], key: str):
|
| 344 |
if not message.strip():
|
| 345 |
return history, None
|
|
@@ -353,16 +255,11 @@ def create_gradio_interface():
|
|
| 353 |
return history, None
|
| 354 |
|
| 355 |
async def on_generate():
|
| 356 |
-
|
| 357 |
-
if "error" in
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
profile = result["profile"]
|
| 361 |
-
# Prepare the raw output as markdown. Wrapping in triple backticks for code formatting.
|
| 362 |
-
raw_markdown = f"```json\n{profile.get('raw_output', '')}\n```"
|
| 363 |
-
return profile, result["filename"], raw_markdown
|
| 364 |
|
| 365 |
-
# Bind events
|
| 366 |
msg.submit(
|
| 367 |
on_message,
|
| 368 |
inputs=[msg, chatbot, api_key],
|
|
@@ -377,15 +274,12 @@ def create_gradio_interface():
|
|
| 377 |
|
| 378 |
generate_btn.click(
|
| 379 |
on_generate,
|
| 380 |
-
outputs=[profile_output, download_btn
|
| 381 |
)
|
| 382 |
|
| 383 |
return demo
|
| 384 |
|
| 385 |
if __name__ == "__main__":
|
| 386 |
demo = create_gradio_interface()
|
| 387 |
-
demo.queue()
|
| 388 |
-
demo.launch(
|
| 389 |
-
server_name="0.0.0.0",
|
| 390 |
-
server_port=7860
|
| 391 |
-
)
|
|
|
|
| 3 |
from datetime import datetime
|
| 4 |
from typing import Dict, List, Optional, Any
|
| 5 |
import gradio as gr
|
| 6 |
+
from openai import AsyncOpenAI
|
| 7 |
|
| 8 |
# Configure logging
|
| 9 |
logging.basicConfig(level=logging.INFO)
|
| 10 |
logger = logging.getLogger(__name__)
|
| 11 |
|
|
|
|
| 12 |
CONVERSATION_PROMPT = """You are LOSS DOG, a professional profile builder. Your goal is to have natural conversations
|
| 13 |
with users to gather information about their professional background across 9 categories:
|
| 14 |
|
|
|
|
| 27 |
have nothing more to share), let them know they can click 'Generate Profile' to proceed.
|
| 28 |
"""
|
| 29 |
|
| 30 |
+
EXTRACTION_PROMPT = """You are a professional information extraction system. Your task is to extract information from the potentially unstructure conversation and return ONLY a valid JSON object. Do not include any explanatory text before or after the JSON.
|
| 31 |
|
| 32 |
+
Return the data in this exact structure:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
{
|
| 34 |
"work_history_experience": {
|
| 35 |
"positions": [
|
|
|
|
| 40 |
"location": string,
|
| 41 |
"employment_type": string,
|
| 42 |
"adaptability": {
|
| 43 |
+
"career_shifts": [],
|
| 44 |
+
"upskilling": []
|
| 45 |
},
|
| 46 |
+
"promotions": [],
|
| 47 |
+
"confidence": number
|
| 48 |
}
|
| 49 |
]
|
| 50 |
},
|
| 51 |
"salary_compensation": {
|
| 52 |
"history": [
|
| 53 |
{
|
| 54 |
+
"base_salary": number,
|
| 55 |
+
"bonus_structure": string,
|
| 56 |
"stock_options": {
|
| 57 |
"type": string,
|
| 58 |
"details": string
|
| 59 |
},
|
| 60 |
+
"commission": null,
|
| 61 |
"benefits": {
|
| 62 |
"health": string,
|
| 63 |
"pto": string,
|
| 64 |
"retirement": string,
|
| 65 |
+
"other": []
|
| 66 |
},
|
| 67 |
+
"confidence": number
|
| 68 |
}
|
| 69 |
]
|
| 70 |
},
|
| 71 |
"skills_certifications": {
|
| 72 |
+
"hard_skills": [],
|
| 73 |
+
"soft_skills": [],
|
| 74 |
+
"certifications": [],
|
| 75 |
+
"licenses": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
},
|
| 77 |
"education_learning": {
|
| 78 |
+
"formal_education": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
"online_courses": [],
|
| 80 |
"executive_education": []
|
| 81 |
},
|
| 82 |
"personal_branding": {
|
| 83 |
"portfolio": {
|
| 84 |
+
"github": null,
|
| 85 |
+
"behance": null,
|
| 86 |
+
"other": []
|
| 87 |
},
|
| 88 |
"blog_posts": [],
|
| 89 |
"blockchain_projects": {
|
|
|
|
| 91 |
"defi": [],
|
| 92 |
"dapps": []
|
| 93 |
},
|
|
|
|
| 94 |
"social_media": {
|
| 95 |
"platforms": [],
|
| 96 |
"influence_metrics": {}
|
|
|
|
| 108 |
"social_proof_networking": {
|
| 109 |
"mentors": [],
|
| 110 |
"references": [],
|
| 111 |
+
"memberships": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
"conference_engagement": []
|
| 113 |
},
|
| 114 |
"project_contributions": {
|
|
|
|
| 118 |
"patents": [],
|
| 119 |
"impact": {
|
| 120 |
"description": string,
|
| 121 |
+
"metrics": [],
|
| 122 |
+
"confidence": number
|
| 123 |
}
|
| 124 |
},
|
| 125 |
"work_performance_metrics": {
|
|
|
|
| 131 |
}
|
| 132 |
}
|
| 133 |
|
| 134 |
+
IMPORTANT: Return ONLY the JSON. Do not add any explanation text."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
class ProfileBuilder:
|
| 137 |
def __init__(self):
|
|
|
|
| 139 |
self.client = None
|
| 140 |
|
| 141 |
def _initialize_client(self, api_key: str) -> None:
|
|
|
|
| 142 |
if not api_key.startswith("sk-"):
|
| 143 |
raise ValueError("Invalid API key format")
|
| 144 |
self.client = AsyncOpenAI(api_key=api_key)
|
| 145 |
|
| 146 |
async def process_message(self, message: str, api_key: str) -> Dict[str, Any]:
|
|
|
|
| 147 |
try:
|
| 148 |
if not self.client:
|
| 149 |
self._initialize_client(api_key)
|
| 150 |
|
|
|
|
| 151 |
self.conversation_history.append({"role": "user", "content": message})
|
| 152 |
|
|
|
|
| 153 |
completion = await self.client.chat.completions.create(
|
| 154 |
model="gpt-4o-mini",
|
| 155 |
messages=[
|
|
|
|
| 169 |
return {"error": str(e)}
|
| 170 |
|
| 171 |
async def generate_profile(self) -> Dict[str, Any]:
|
|
|
|
| 172 |
try:
|
| 173 |
if not self.client:
|
| 174 |
raise ValueError("OpenAI client not initialized")
|
| 175 |
|
|
|
|
| 176 |
conversation_text = "\n".join(
|
| 177 |
f"{msg['role']}: {msg['content']}"
|
| 178 |
for msg in self.conversation_history
|
| 179 |
)
|
| 180 |
|
|
|
|
| 181 |
completion = await self.client.chat.completions.create(
|
| 182 |
model="gpt-4o-mini",
|
| 183 |
messages=[
|
|
|
|
| 187 |
temperature=0.3
|
| 188 |
)
|
| 189 |
|
| 190 |
+
# Clean and parse the JSON response
|
| 191 |
+
response_text = completion.choices[0].message.content.strip()
|
| 192 |
+
profile_data = json.loads(response_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
|
|
|
| 194 |
profile = {
|
| 195 |
"profile_data": profile_data,
|
|
|
|
| 196 |
"metadata": {
|
| 197 |
"generated_at": datetime.now().isoformat(),
|
| 198 |
"conversation_length": len(self.conversation_history)
|
|
|
|
| 205 |
with open(filename, 'w', encoding='utf-8') as f:
|
| 206 |
json.dump(profile, f, indent=2)
|
| 207 |
|
| 208 |
+
return profile, filename
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
+
except json.JSONDecodeError as e:
|
| 211 |
+
logger.error(f"JSON parsing error: {str(e)}\nRaw output: {response_text}")
|
| 212 |
+
return {"error": "Failed to parse profile data"}, None
|
| 213 |
except Exception as e:
|
| 214 |
logger.error(f"Error generating profile: {str(e)}")
|
| 215 |
+
return {"error": str(e)}, None
|
| 216 |
|
| 217 |
def create_gradio_interface():
|
|
|
|
| 218 |
builder = ProfileBuilder()
|
| 219 |
|
| 220 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
|
|
| 239 |
|
| 240 |
with gr.Column(scale=1):
|
| 241 |
generate_btn = gr.Button("Generate Profile")
|
| 242 |
+
profile_output = gr.JSON(label="Generated Profile")
|
|
|
|
|
|
|
|
|
|
| 243 |
download_btn = gr.File(label="Download Profile")
|
| 244 |
|
|
|
|
| 245 |
async def on_message(message: str, history: List[List[str]], key: str):
|
| 246 |
if not message.strip():
|
| 247 |
return history, None
|
|
|
|
| 255 |
return history, None
|
| 256 |
|
| 257 |
async def on_generate():
|
| 258 |
+
profile, filename = await builder.generate_profile()
|
| 259 |
+
if "error" in profile:
|
| 260 |
+
return profile, None
|
| 261 |
+
return profile["profile_data"], filename
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
|
|
|
|
| 263 |
msg.submit(
|
| 264 |
on_message,
|
| 265 |
inputs=[msg, chatbot, api_key],
|
|
|
|
| 274 |
|
| 275 |
generate_btn.click(
|
| 276 |
on_generate,
|
| 277 |
+
outputs=[profile_output, download_btn]
|
| 278 |
)
|
| 279 |
|
| 280 |
return demo
|
| 281 |
|
| 282 |
if __name__ == "__main__":
|
| 283 |
demo = create_gradio_interface()
|
| 284 |
+
demo.queue()
|
| 285 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|