Update app.py
Browse files
app.py
CHANGED
@@ -3,13 +3,12 @@ import logging
|
|
3 |
from datetime import datetime
|
4 |
from typing import Dict, List, Optional, Any
|
5 |
import gradio as gr
|
6 |
-
from openai import AsyncOpenAI
|
7 |
|
8 |
# Configure logging
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
-
# System prompts remain the same as before
|
13 |
CONVERSATION_PROMPT = """You are LOSS DOG, a professional profile builder. Your goal is to have natural conversations
|
14 |
with users to gather information about their professional background across 9 categories:
|
15 |
|
@@ -28,16 +27,9 @@ but respect their boundaries. Once you believe you have gathered sufficient info
|
|
28 |
have nothing more to share), let them know they can click 'Generate Profile' to proceed.
|
29 |
"""
|
30 |
|
31 |
-
EXTRACTION_PROMPT = """You are a professional information extraction system. Your task is to
|
32 |
|
33 |
-
|
34 |
-
1. Read entire conversation history
|
35 |
-
2. Extract explicit and implicit information
|
36 |
-
3. Make reasonable inferences when appropriate
|
37 |
-
4. Structure data according to defined schema
|
38 |
-
5. Include confidence scores for all extracted information
|
39 |
-
|
40 |
-
OUTPUT SCHEMA:
|
41 |
{
|
42 |
"work_history_experience": {
|
43 |
"positions": [
|
@@ -48,78 +40,50 @@ OUTPUT SCHEMA:
|
|
48 |
"location": string,
|
49 |
"employment_type": string,
|
50 |
"adaptability": {
|
51 |
-
"career_shifts":
|
52 |
-
"upskilling":
|
53 |
},
|
54 |
-
"promotions":
|
55 |
-
"confidence":
|
56 |
}
|
57 |
]
|
58 |
},
|
59 |
"salary_compensation": {
|
60 |
"history": [
|
61 |
{
|
62 |
-
"base_salary": number
|
63 |
-
"bonus_structure": string
|
64 |
"stock_options": {
|
65 |
"type": string,
|
66 |
"details": string
|
67 |
},
|
68 |
-
"commission":
|
69 |
"benefits": {
|
70 |
"health": string,
|
71 |
"pto": string,
|
72 |
"retirement": string,
|
73 |
-
"other":
|
74 |
},
|
75 |
-
"confidence":
|
76 |
}
|
77 |
]
|
78 |
},
|
79 |
"skills_certifications": {
|
80 |
-
"hard_skills":
|
81 |
-
"soft_skills":
|
82 |
-
"
|
83 |
-
"
|
84 |
-
"certifications": [
|
85 |
-
{
|
86 |
-
"name": string,
|
87 |
-
"issuer": string,
|
88 |
-
"date": string,
|
89 |
-
"confidence": float
|
90 |
-
}
|
91 |
-
],
|
92 |
-
"licenses": [
|
93 |
-
{
|
94 |
-
"type": string,
|
95 |
-
"issuer": string,
|
96 |
-
"valid_until": string,
|
97 |
-
"confidence": float
|
98 |
-
}
|
99 |
-
]
|
100 |
},
|
101 |
"education_learning": {
|
102 |
-
"formal_education": [
|
103 |
-
{
|
104 |
-
"degree": string,
|
105 |
-
"institution": string,
|
106 |
-
"gpa": number | null,
|
107 |
-
"research": string[],
|
108 |
-
"period": {
|
109 |
-
"start": string,
|
110 |
-
"end": string | null
|
111 |
-
},
|
112 |
-
"confidence": float
|
113 |
-
}
|
114 |
-
],
|
115 |
"online_courses": [],
|
116 |
"executive_education": []
|
117 |
},
|
118 |
"personal_branding": {
|
119 |
"portfolio": {
|
120 |
-
"github":
|
121 |
-
"behance":
|
122 |
-
"other":
|
123 |
},
|
124 |
"blog_posts": [],
|
125 |
"blockchain_projects": {
|
@@ -127,7 +91,6 @@ OUTPUT SCHEMA:
|
|
127 |
"defi": [],
|
128 |
"dapps": []
|
129 |
},
|
130 |
-
"public_speaking": [],
|
131 |
"social_media": {
|
132 |
"platforms": [],
|
133 |
"influence_metrics": {}
|
@@ -145,14 +108,7 @@ OUTPUT SCHEMA:
|
|
145 |
"social_proof_networking": {
|
146 |
"mentors": [],
|
147 |
"references": [],
|
148 |
-
"memberships": [
|
149 |
-
{
|
150 |
-
"organization": string,
|
151 |
-
"type": string,
|
152 |
-
"period": string,
|
153 |
-
"confidence": float
|
154 |
-
}
|
155 |
-
],
|
156 |
"conference_engagement": []
|
157 |
},
|
158 |
"project_contributions": {
|
@@ -162,8 +118,8 @@ OUTPUT SCHEMA:
|
|
162 |
"patents": [],
|
163 |
"impact": {
|
164 |
"description": string,
|
165 |
-
"metrics":
|
166 |
-
"confidence":
|
167 |
}
|
168 |
},
|
169 |
"work_performance_metrics": {
|
@@ -175,40 +131,7 @@ OUTPUT SCHEMA:
|
|
175 |
}
|
176 |
}
|
177 |
|
178 |
-
|
179 |
-
|
180 |
-
1. Process systematically:
|
181 |
-
- Analyze conversation thoroughly
|
182 |
-
- Look for both direct statements and implied information
|
183 |
-
- Cross-reference information across different parts of conversation
|
184 |
-
- Make reasonable inferences when appropriate
|
185 |
-
|
186 |
-
2. For each piece of information:
|
187 |
-
- Clean and standardize the data
|
188 |
-
- Assign confidence scores (0.0-1.0)
|
189 |
-
- Mark inferred information
|
190 |
-
- Include source context where relevant
|
191 |
-
|
192 |
-
3. Quality requirements:
|
193 |
-
- Use consistent date formats (YYYY-MM-DD)
|
194 |
-
- Standardize company names and titles
|
195 |
-
- Use empty arrays [] for missing information
|
196 |
-
- Never use null for array fields
|
197 |
-
- Include confidence scores for all extracted data
|
198 |
-
|
199 |
-
4. Handle missing information:
|
200 |
-
- Use empty arrays [] rather than null
|
201 |
-
- Mark inferred information clearly
|
202 |
-
- Include partial information when complete data isn't available
|
203 |
-
- Note uncertainty in confidence scores
|
204 |
-
|
205 |
-
Remember to:
|
206 |
-
- Process each category thoroughly
|
207 |
-
- Cross-reference information for consistency
|
208 |
-
- Make reasonable inferences when appropriate
|
209 |
-
- Maintain consistent formatting
|
210 |
-
- Include all required fields even if empty
|
211 |
-
"""
|
212 |
|
213 |
class ProfileBuilder:
|
214 |
def __init__(self):
|
@@ -216,21 +139,17 @@ class ProfileBuilder:
|
|
216 |
self.client = None
|
217 |
|
218 |
def _initialize_client(self, api_key: str) -> None:
|
219 |
-
"""Initialize AsyncOpenAI client with API key."""
|
220 |
if not api_key.startswith("sk-"):
|
221 |
raise ValueError("Invalid API key format")
|
222 |
self.client = AsyncOpenAI(api_key=api_key)
|
223 |
|
224 |
async def process_message(self, message: str, api_key: str) -> Dict[str, Any]:
|
225 |
-
"""Process a user message through conversation phase."""
|
226 |
try:
|
227 |
if not self.client:
|
228 |
self._initialize_client(api_key)
|
229 |
|
230 |
-
# Add message to history
|
231 |
self.conversation_history.append({"role": "user", "content": message})
|
232 |
|
233 |
-
# Get AI response - properly awaited
|
234 |
completion = await self.client.chat.completions.create(
|
235 |
model="gpt-4o-mini",
|
236 |
messages=[
|
@@ -250,18 +169,15 @@ class ProfileBuilder:
|
|
250 |
return {"error": str(e)}
|
251 |
|
252 |
async def generate_profile(self) -> Dict[str, Any]:
|
253 |
-
"""Process conversation history into structured profile."""
|
254 |
try:
|
255 |
if not self.client:
|
256 |
raise ValueError("OpenAI client not initialized")
|
257 |
|
258 |
-
# Convert conversation history to text
|
259 |
conversation_text = "\n".join(
|
260 |
f"{msg['role']}: {msg['content']}"
|
261 |
for msg in self.conversation_history
|
262 |
)
|
263 |
|
264 |
-
# Extract structured information - properly awaited
|
265 |
completion = await self.client.chat.completions.create(
|
266 |
model="gpt-4o-mini",
|
267 |
messages=[
|
@@ -271,21 +187,12 @@ class ProfileBuilder:
|
|
271 |
temperature=0.3
|
272 |
)
|
273 |
|
274 |
-
#
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
# Attempt to parse the JSON
|
279 |
-
try:
|
280 |
-
profile_data = json.loads(raw_output)
|
281 |
-
except json.JSONDecodeError as decode_error:
|
282 |
-
logger.error("Failed to decode JSON. The output may not be valid JSON.")
|
283 |
-
profile_data = None # Indicate failure to parse
|
284 |
|
285 |
-
# Build the profile output including metadata and raw output
|
286 |
profile = {
|
287 |
"profile_data": profile_data,
|
288 |
-
"raw_output": raw_output,
|
289 |
"metadata": {
|
290 |
"generated_at": datetime.now().isoformat(),
|
291 |
"conversation_length": len(self.conversation_history)
|
@@ -298,17 +205,16 @@ class ProfileBuilder:
|
|
298 |
with open(filename, 'w', encoding='utf-8') as f:
|
299 |
json.dump(profile, f, indent=2)
|
300 |
|
301 |
-
return
|
302 |
-
"profile": profile,
|
303 |
-
"filename": filename
|
304 |
-
}
|
305 |
|
|
|
|
|
|
|
306 |
except Exception as e:
|
307 |
logger.error(f"Error generating profile: {str(e)}")
|
308 |
-
return {"error": str(e)}
|
309 |
|
310 |
def create_gradio_interface():
|
311 |
-
"""Create the Gradio interface."""
|
312 |
builder = ProfileBuilder()
|
313 |
|
314 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
@@ -333,13 +239,9 @@ def create_gradio_interface():
|
|
333 |
|
334 |
with gr.Column(scale=1):
|
335 |
generate_btn = gr.Button("Generate Profile")
|
336 |
-
|
337 |
-
profile_output = gr.JSON(label="Generated Profile (Parsed JSON)")
|
338 |
-
# Markdown output to always show the raw AI output
|
339 |
-
raw_output_markdown = gr.Markdown(label="Raw Output from AI")
|
340 |
download_btn = gr.File(label="Download Profile")
|
341 |
|
342 |
-
# Event handlers
|
343 |
async def on_message(message: str, history: List[List[str]], key: str):
|
344 |
if not message.strip():
|
345 |
return history, None
|
@@ -353,16 +255,11 @@ def create_gradio_interface():
|
|
353 |
return history, None
|
354 |
|
355 |
async def on_generate():
|
356 |
-
|
357 |
-
if "error" in
|
358 |
-
|
359 |
-
|
360 |
-
profile = result["profile"]
|
361 |
-
# Prepare the raw output as markdown. Wrapping in triple backticks for code formatting.
|
362 |
-
raw_markdown = f"```json\n{profile.get('raw_output', '')}\n```"
|
363 |
-
return profile, result["filename"], raw_markdown
|
364 |
|
365 |
-
# Bind events
|
366 |
msg.submit(
|
367 |
on_message,
|
368 |
inputs=[msg, chatbot, api_key],
|
@@ -377,15 +274,12 @@ def create_gradio_interface():
|
|
377 |
|
378 |
generate_btn.click(
|
379 |
on_generate,
|
380 |
-
outputs=[profile_output, download_btn
|
381 |
)
|
382 |
|
383 |
return demo
|
384 |
|
385 |
if __name__ == "__main__":
|
386 |
demo = create_gradio_interface()
|
387 |
-
demo.queue()
|
388 |
-
demo.launch(
|
389 |
-
server_name="0.0.0.0",
|
390 |
-
server_port=7860
|
391 |
-
)
|
|
|
3 |
from datetime import datetime
|
4 |
from typing import Dict, List, Optional, Any
|
5 |
import gradio as gr
|
6 |
+
from openai import AsyncOpenAI
|
7 |
|
8 |
# Configure logging
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
|
|
12 |
CONVERSATION_PROMPT = """You are LOSS DOG, a professional profile builder. Your goal is to have natural conversations
|
13 |
with users to gather information about their professional background across 9 categories:
|
14 |
|
|
|
27 |
have nothing more to share), let them know they can click 'Generate Profile' to proceed.
|
28 |
"""
|
29 |
|
30 |
+
EXTRACTION_PROMPT = """You are a professional information extraction system. Your task is to extract information from the potentially unstructure conversation and return ONLY a valid JSON object. Do not include any explanatory text before or after the JSON.
|
31 |
|
32 |
+
Return the data in this exact structure:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
{
|
34 |
"work_history_experience": {
|
35 |
"positions": [
|
|
|
40 |
"location": string,
|
41 |
"employment_type": string,
|
42 |
"adaptability": {
|
43 |
+
"career_shifts": [],
|
44 |
+
"upskilling": []
|
45 |
},
|
46 |
+
"promotions": [],
|
47 |
+
"confidence": number
|
48 |
}
|
49 |
]
|
50 |
},
|
51 |
"salary_compensation": {
|
52 |
"history": [
|
53 |
{
|
54 |
+
"base_salary": number,
|
55 |
+
"bonus_structure": string,
|
56 |
"stock_options": {
|
57 |
"type": string,
|
58 |
"details": string
|
59 |
},
|
60 |
+
"commission": null,
|
61 |
"benefits": {
|
62 |
"health": string,
|
63 |
"pto": string,
|
64 |
"retirement": string,
|
65 |
+
"other": []
|
66 |
},
|
67 |
+
"confidence": number
|
68 |
}
|
69 |
]
|
70 |
},
|
71 |
"skills_certifications": {
|
72 |
+
"hard_skills": [],
|
73 |
+
"soft_skills": [],
|
74 |
+
"certifications": [],
|
75 |
+
"licenses": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
},
|
77 |
"education_learning": {
|
78 |
+
"formal_education": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
"online_courses": [],
|
80 |
"executive_education": []
|
81 |
},
|
82 |
"personal_branding": {
|
83 |
"portfolio": {
|
84 |
+
"github": null,
|
85 |
+
"behance": null,
|
86 |
+
"other": []
|
87 |
},
|
88 |
"blog_posts": [],
|
89 |
"blockchain_projects": {
|
|
|
91 |
"defi": [],
|
92 |
"dapps": []
|
93 |
},
|
|
|
94 |
"social_media": {
|
95 |
"platforms": [],
|
96 |
"influence_metrics": {}
|
|
|
108 |
"social_proof_networking": {
|
109 |
"mentors": [],
|
110 |
"references": [],
|
111 |
+
"memberships": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
"conference_engagement": []
|
113 |
},
|
114 |
"project_contributions": {
|
|
|
118 |
"patents": [],
|
119 |
"impact": {
|
120 |
"description": string,
|
121 |
+
"metrics": [],
|
122 |
+
"confidence": number
|
123 |
}
|
124 |
},
|
125 |
"work_performance_metrics": {
|
|
|
131 |
}
|
132 |
}
|
133 |
|
134 |
+
IMPORTANT: Return ONLY the JSON. Do not add any explanation text."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
class ProfileBuilder:
|
137 |
def __init__(self):
|
|
|
139 |
self.client = None
|
140 |
|
141 |
def _initialize_client(self, api_key: str) -> None:
|
|
|
142 |
if not api_key.startswith("sk-"):
|
143 |
raise ValueError("Invalid API key format")
|
144 |
self.client = AsyncOpenAI(api_key=api_key)
|
145 |
|
146 |
async def process_message(self, message: str, api_key: str) -> Dict[str, Any]:
|
|
|
147 |
try:
|
148 |
if not self.client:
|
149 |
self._initialize_client(api_key)
|
150 |
|
|
|
151 |
self.conversation_history.append({"role": "user", "content": message})
|
152 |
|
|
|
153 |
completion = await self.client.chat.completions.create(
|
154 |
model="gpt-4o-mini",
|
155 |
messages=[
|
|
|
169 |
return {"error": str(e)}
|
170 |
|
171 |
async def generate_profile(self) -> Dict[str, Any]:
|
|
|
172 |
try:
|
173 |
if not self.client:
|
174 |
raise ValueError("OpenAI client not initialized")
|
175 |
|
|
|
176 |
conversation_text = "\n".join(
|
177 |
f"{msg['role']}: {msg['content']}"
|
178 |
for msg in self.conversation_history
|
179 |
)
|
180 |
|
|
|
181 |
completion = await self.client.chat.completions.create(
|
182 |
model="gpt-4o-mini",
|
183 |
messages=[
|
|
|
187 |
temperature=0.3
|
188 |
)
|
189 |
|
190 |
+
# Clean and parse the JSON response
|
191 |
+
response_text = completion.choices[0].message.content.strip()
|
192 |
+
profile_data = json.loads(response_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
|
|
194 |
profile = {
|
195 |
"profile_data": profile_data,
|
|
|
196 |
"metadata": {
|
197 |
"generated_at": datetime.now().isoformat(),
|
198 |
"conversation_length": len(self.conversation_history)
|
|
|
205 |
with open(filename, 'w', encoding='utf-8') as f:
|
206 |
json.dump(profile, f, indent=2)
|
207 |
|
208 |
+
return profile, filename
|
|
|
|
|
|
|
209 |
|
210 |
+
except json.JSONDecodeError as e:
|
211 |
+
logger.error(f"JSON parsing error: {str(e)}\nRaw output: {response_text}")
|
212 |
+
return {"error": "Failed to parse profile data"}, None
|
213 |
except Exception as e:
|
214 |
logger.error(f"Error generating profile: {str(e)}")
|
215 |
+
return {"error": str(e)}, None
|
216 |
|
217 |
def create_gradio_interface():
|
|
|
218 |
builder = ProfileBuilder()
|
219 |
|
220 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
|
239 |
|
240 |
with gr.Column(scale=1):
|
241 |
generate_btn = gr.Button("Generate Profile")
|
242 |
+
profile_output = gr.JSON(label="Generated Profile")
|
|
|
|
|
|
|
243 |
download_btn = gr.File(label="Download Profile")
|
244 |
|
|
|
245 |
async def on_message(message: str, history: List[List[str]], key: str):
|
246 |
if not message.strip():
|
247 |
return history, None
|
|
|
255 |
return history, None
|
256 |
|
257 |
async def on_generate():
|
258 |
+
profile, filename = await builder.generate_profile()
|
259 |
+
if "error" in profile:
|
260 |
+
return profile, None
|
261 |
+
return profile["profile_data"], filename
|
|
|
|
|
|
|
|
|
262 |
|
|
|
263 |
msg.submit(
|
264 |
on_message,
|
265 |
inputs=[msg, chatbot, api_key],
|
|
|
274 |
|
275 |
generate_btn.click(
|
276 |
on_generate,
|
277 |
+
outputs=[profile_output, download_btn]
|
278 |
)
|
279 |
|
280 |
return demo
|
281 |
|
282 |
if __name__ == "__main__":
|
283 |
demo = create_gradio_interface()
|
284 |
+
demo.queue()
|
285 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|