Update app.py
Browse files
app.py
CHANGED
@@ -5,429 +5,531 @@ from datetime import datetime
|
|
5 |
from typing import Dict, List, Optional, Any, Tuple
|
6 |
from dataclasses import dataclass, field
|
7 |
|
8 |
-
import openai
|
9 |
import gradio as gr
|
10 |
|
11 |
-
|
12 |
logging.basicConfig(
|
13 |
level=logging.INFO,
|
14 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
15 |
handlers=[
|
16 |
logging.StreamHandler(),
|
17 |
-
logging.FileHandler('
|
18 |
]
|
19 |
)
|
20 |
logger = logging.getLogger(__name__)
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
and
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
@dataclass
|
39 |
-
class
|
40 |
-
"""
|
41 |
-
text: str
|
42 |
category: str
|
|
|
43 |
confidence: float
|
44 |
-
|
|
|
|
|
45 |
metadata: Dict[str, Any] = field(default_factory=dict)
|
46 |
|
47 |
-
|
48 |
@dataclass
|
49 |
class ConversationState:
|
50 |
-
"""Tracks the
|
51 |
-
|
52 |
-
|
|
|
|
|
53 |
current_focus: Optional[str] = None
|
54 |
-
|
55 |
-
last_error: Optional[str] = None
|
56 |
-
last_update: datetime = field(default_factory=datetime.now)
|
57 |
-
|
58 |
-
def add_extracted_info(self, info: ExtractedInfo) -> None:
|
59 |
-
"""Add new extracted information and update state accordingly."""
|
60 |
-
self.extracted_items.append(info)
|
61 |
-
if info.category not in self.categories_covered:
|
62 |
-
self.categories_covered.append(info.category)
|
63 |
-
self.last_update = datetime.now()
|
64 |
-
class InformationExtractor:
|
65 |
-
"""
|
66 |
-
Core class for handling information extraction from user messages to build a structured resume.
|
67 |
|
68 |
-
|
69 |
-
conversation_history: A list of dictionaries storing each message and its role (user/assistant).
|
70 |
-
state: An instance of ConversationState, which tracks the extraction progress and items.
|
71 |
-
extraction_categories: A list of main categories we want to extract for building the resume.
|
72 |
"""
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
77 |
self.state = ConversationState()
|
78 |
-
self.
|
79 |
-
"personal_info",
|
80 |
-
"education",
|
81 |
-
"work_experience",
|
82 |
-
"skills",
|
83 |
-
"achievements"
|
84 |
-
|
85 |
-
|
86 |
self._api_key: Optional[str] = None
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
if not api_key.strip():
|
99 |
-
raise ValueError("API key cannot be empty.")
|
100 |
-
if not api_key.startswith("sk-"):
|
101 |
-
raise ValueError("Invalid API key format. It must start with 'sk-'.")
|
102 |
-
return True
|
103 |
|
104 |
def _initialize_client(self, api_key: str) -> None:
|
105 |
-
"""
|
106 |
-
Initialize openai with the given API key. Uses error handling to catch any issue.
|
107 |
-
|
108 |
-
Args:
|
109 |
-
api_key: The user's OpenAI API key.
|
110 |
-
"""
|
111 |
try:
|
112 |
-
if
|
113 |
-
|
114 |
-
|
|
|
|
|
115 |
except Exception as e:
|
116 |
-
logger.error(f"
|
117 |
raise
|
118 |
|
119 |
-
def
|
120 |
-
"""
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
})
|
132 |
-
|
133 |
-
def _get_ai_response(self, retries: int = 3) -> str:
|
134 |
-
"""
|
135 |
-
Get an AI response from OpenAI's ChatCompletion endpoint.
|
136 |
-
|
137 |
-
Args:
|
138 |
-
retries: Number of times to retry upon failure.
|
139 |
-
|
140 |
-
Returns:
|
141 |
-
The text content of the AI's reply.
|
142 |
-
"""
|
143 |
-
if not self._api_key:
|
144 |
-
raise ValueError("OpenAI client not initialized (API key missing).")
|
145 |
-
|
146 |
-
for attempt in range(retries):
|
147 |
-
try:
|
148 |
-
# We use a context manager for the create call
|
149 |
-
with openai.ChatCompletion.create(
|
150 |
-
model="gpt-4o-mini", # or "gpt-4" or any other available model
|
151 |
-
messages=[
|
152 |
-
{"role": "system", "content": SYSTEM_PROMPT},
|
153 |
-
*[{"role": msg["role"], "content": msg["content"]} for msg in self.conversation_history]
|
154 |
-
],
|
155 |
-
temperature=0.7,
|
156 |
-
max_tokens=2000
|
157 |
-
) as response:
|
158 |
-
return response["choices"][0]["message"]["content"]
|
159 |
-
except Exception as e:
|
160 |
-
logger.warning(f"Attempt {attempt + 1} failed: {str(e)}")
|
161 |
-
if attempt == retries - 1:
|
162 |
-
raise Exception(f"Failed after {retries} attempts: {str(e)}")
|
163 |
-
return ""
|
164 |
-
|
165 |
-
def _extract_resume_information(self, text: str) -> List[ExtractedInfo]:
|
166 |
-
"""
|
167 |
-
Extract structured career and education-related information from the given text.
|
168 |
-
|
169 |
-
Args:
|
170 |
-
text: The combined user and AI text from which to extract relevant info.
|
171 |
-
|
172 |
-
Returns:
|
173 |
-
A list of ExtractedInfo objects with the extracted details.
|
174 |
-
"""
|
175 |
-
if not self._api_key:
|
176 |
-
raise ValueError("OpenAI client not initialized (API key missing).")
|
177 |
-
|
178 |
-
# We'll ask GPT to produce JSON with extracted items
|
179 |
-
extraction_prompt = f"""
|
180 |
-
Analyze the following text and extract relevant information for resume building.
|
181 |
-
Focus on these key categories: {', '.join(self.extraction_categories)}.
|
182 |
-
|
183 |
-
For each piece of extracted data, output a JSON structure with:
|
184 |
-
{{
|
185 |
-
"extracted_items": [
|
186 |
-
{{
|
187 |
-
"text": "...",
|
188 |
-
"category": "...",
|
189 |
-
"confidence": 0.0,
|
190 |
-
"metadata": {{ ... }}
|
191 |
-
}},
|
192 |
-
...
|
193 |
]
|
194 |
-
}}
|
195 |
-
|
196 |
-
Text to analyze: {text}
|
197 |
-
"""
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
messages=[
|
203 |
-
{"role": "system", "content": SYSTEM_PROMPT},
|
204 |
-
{"role": "user", "content": extraction_prompt}
|
205 |
-
],
|
206 |
temperature=0.3,
|
207 |
-
max_tokens=
|
208 |
-
)
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
222 |
)
|
223 |
-
extracted_items.append(new_info)
|
224 |
|
225 |
-
|
|
|
|
|
226 |
|
227 |
-
except json.JSONDecodeError as e:
|
228 |
-
logger.error(f"Error parsing extraction response: {str(e)}")
|
229 |
-
return []
|
230 |
except Exception as e:
|
231 |
-
logger.error(f"Error
|
232 |
-
|
233 |
|
234 |
-
def
|
235 |
-
"""
|
236 |
-
Update completion status based on categories covered and confidence levels.
|
237 |
-
"""
|
238 |
-
total_categories = len(self.extraction_categories)
|
239 |
-
covered_categories = len(self.state.categories_covered)
|
240 |
-
base_completion = (covered_categories / total_categories) * 100 if total_categories > 0 else 0
|
241 |
-
|
242 |
-
if self.state.extracted_items:
|
243 |
-
avg_confidence = sum(item.confidence for item in self.state.extracted_items) / len(self.state.extracted_items)
|
244 |
-
adjusted_completion = base_completion * avg_confidence
|
245 |
-
else:
|
246 |
-
adjusted_completion = 0.0
|
247 |
-
|
248 |
-
# Cap at 100%
|
249 |
-
self.state.completion_percentage = min(adjusted_completion, 100.0)
|
250 |
-
def process_message(self, message: str, api_key: str) -> Dict[str, Any]:
|
251 |
-
"""
|
252 |
-
Process a user message:
|
253 |
-
1. Initialize OpenAI if needed,
|
254 |
-
2. Add user message to history,
|
255 |
-
3. Get AI response,
|
256 |
-
4. Extract resume information,
|
257 |
-
5. Update the conversation state,
|
258 |
-
6. Return structured data.
|
259 |
-
|
260 |
-
Args:
|
261 |
-
message: The user's chat input.
|
262 |
-
api_key: The user's OpenAI API key.
|
263 |
-
|
264 |
-
Returns:
|
265 |
-
A dictionary with AI response, extracted info, and updated completion status.
|
266 |
-
"""
|
267 |
-
# Always return a dictionary so that the UI can parse it
|
268 |
try:
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
if
|
285 |
-
self.
|
286 |
-
|
287 |
-
# Add user message to conversation history
|
288 |
-
self._add_to_history("user", message)
|
289 |
-
ai_response = self._get_ai_response()
|
290 |
-
self._add_to_history("assistant", ai_response)
|
291 |
-
|
292 |
-
# Extract new info from the full conversation
|
293 |
-
new_info = self._extract_resume_information(text=message + "\n" + ai_response)
|
294 |
|
295 |
-
|
296 |
-
|
297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
self._update_completion_status()
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
return {
|
302 |
"response": ai_response,
|
303 |
-
"
|
304 |
-
{
|
305 |
-
"
|
306 |
-
"
|
307 |
-
"
|
308 |
}
|
309 |
-
for
|
310 |
-
],
|
311 |
-
"completion_status": {
|
312 |
-
"percentage": self.state.completion_percentage,
|
313 |
-
"categories_covered": self.state.categories_covered,
|
314 |
-
"current_focus": self.state.current_focus
|
315 |
},
|
316 |
-
"
|
317 |
-
|
318 |
-
if new_info else
|
319 |
-
"No new information extracted."
|
320 |
-
),
|
321 |
-
"history_message": f"Added user message '{message}' and assistant response to history."
|
322 |
}
|
323 |
|
324 |
except Exception as e:
|
325 |
-
|
326 |
-
logger.error(error_msg)
|
327 |
-
self.state.last_error = error_msg
|
328 |
return {
|
329 |
-
"
|
330 |
-
"
|
331 |
-
"completion_status": {
|
332 |
-
"percentage": self.state.completion_percentage,
|
333 |
-
"categories_covered": self.state.categories_covered,
|
334 |
-
"current_focus": self.state.current_focus
|
335 |
-
},
|
336 |
-
"analysis_text": error_msg,
|
337 |
-
"history_message": "(Processing failed)"
|
338 |
}
|
339 |
|
340 |
-
def
|
341 |
-
"""
|
342 |
-
Generate structured JSON output containing all extracted information,
|
343 |
-
store it in a file, and return the file name and content.
|
344 |
-
|
345 |
-
Returns:
|
346 |
-
A dict with fields: filename, content, and status.
|
347 |
-
"""
|
348 |
try:
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
"
|
354 |
-
"
|
355 |
-
"
|
356 |
-
"metadata": item.metadata
|
357 |
}
|
358 |
-
for
|
359 |
-
if item.category == category
|
360 |
-
]
|
361 |
-
if items_in_cat:
|
362 |
-
categorized_info[category] = items_in_cat
|
363 |
-
|
364 |
-
output = {
|
365 |
-
"extracted_information": categorized_info,
|
366 |
-
"analysis_summary": {
|
367 |
-
"total_items": len(self.state.extracted_items),
|
368 |
-
"categories_covered": self.state.categories_covered,
|
369 |
-
"completion_percentage": self.state.completion_percentage
|
370 |
},
|
371 |
"metadata": {
|
372 |
"generated_at": datetime.now().isoformat(),
|
373 |
-
"
|
374 |
-
"
|
|
|
|
|
375 |
}
|
376 |
}
|
377 |
|
|
|
378 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
379 |
-
filename = f"
|
380 |
-
|
381 |
-
# Use a context manager for safe file operations
|
382 |
with open(filename, 'w', encoding='utf-8') as f:
|
383 |
-
json.dump(
|
384 |
|
|
|
385 |
return {
|
|
|
386 |
"filename": filename,
|
387 |
-
"content": output,
|
388 |
"status": "success"
|
389 |
}
|
390 |
|
391 |
except Exception as e:
|
392 |
-
|
393 |
-
logger.error(error_msg)
|
394 |
return {
|
395 |
-
"error":
|
396 |
"status": "error"
|
397 |
}
|
398 |
|
399 |
-
|
400 |
def create_gradio_interface() -> gr.Blocks:
|
401 |
-
"""
|
402 |
-
|
403 |
-
|
404 |
-
Returns:
|
405 |
-
The gradio Blocks application interface object.
|
406 |
-
"""
|
407 |
-
extractor = InformationExtractor()
|
408 |
-
|
409 |
-
css = """
|
410 |
-
.container { max-width: 900px; margin: auto; }
|
411 |
-
.message { padding: 1rem; margin: 0.5rem 0; border-radius: 0.5rem; }
|
412 |
-
.info-panel { background: #f5f5f5; padding: 1rem; border-radius: 0.5rem; }
|
413 |
-
.status-badge {
|
414 |
-
display: inline-block;
|
415 |
-
padding: 0.25rem 0.5rem;
|
416 |
-
border-radius: 0.25rem;
|
417 |
-
margin: 0.25rem;
|
418 |
-
background: #e0e0e0;
|
419 |
-
}
|
420 |
-
.extraction-highlight {
|
421 |
-
background: #e8f4f8;
|
422 |
-
border-left: 4px solid #4a90e2;
|
423 |
-
padding: 0.5rem;
|
424 |
-
margin: 0.5rem 0;
|
425 |
-
}
|
426 |
-
"""
|
427 |
-
|
428 |
-
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
429 |
-
gr.Markdown("# 🔍 Information Extraction Assistant\n")
|
430 |
|
|
|
|
|
|
|
431 |
with gr.Row():
|
432 |
with gr.Column(scale=2):
|
433 |
api_key = gr.Textbox(
|
@@ -435,212 +537,89 @@ def create_gradio_interface() -> gr.Blocks:
|
|
435 |
type="password",
|
436 |
placeholder="Enter your OpenAI API key (sk-...)"
|
437 |
)
|
438 |
-
|
439 |
chatbot = gr.Chatbot(
|
440 |
label="Conversation",
|
441 |
-
value=[],
|
442 |
height=400
|
443 |
)
|
444 |
-
|
445 |
with gr.Row():
|
446 |
msg = gr.Textbox(
|
447 |
label="Message",
|
448 |
-
placeholder="
|
449 |
)
|
450 |
-
|
451 |
-
|
452 |
-
with gr.Row():
|
453 |
-
clear = gr.Button("Clear Chat")
|
454 |
-
generate = gr.Button("Generate Report", variant="secondary")
|
455 |
|
456 |
with gr.Column(scale=1):
|
457 |
-
with gr.
|
458 |
-
gr.
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
def process_message(user_input: str, history: List[Dict[str, str]], key: str) -> Tuple[Any, float, Dict[str, Any], str, str]:
|
502 |
-
"""
|
503 |
-
Event handler to process a user message. Returns a 5-element tuple matching the
|
504 |
-
outputs: (new_chat_history, progress_value, categories_json, focus_text, analysis_message).
|
505 |
-
|
506 |
-
Args:
|
507 |
-
user_input: The current user message.
|
508 |
-
history: The existing chat history.
|
509 |
-
key: The user's OpenAI API key.
|
510 |
-
|
511 |
-
Returns:
|
512 |
-
A tuple with updated chatbot messages, progress, categories_covered, current_focus, and analysis text.
|
513 |
-
"""
|
514 |
-
result = extractor.process_message(user_input, key)
|
515 |
-
|
516 |
-
# Update chat history: append the user message + assistant response
|
517 |
-
history.append({"role": "user", "content": user_input})
|
518 |
-
history.append({"role": "assistant", "content": result["response"]})
|
519 |
-
|
520 |
-
# Update progress
|
521 |
-
prog_val = result["completion_status"]["percentage"]
|
522 |
-
cat_cov = {"categories": result["completion_status"]["categories_covered"]}
|
523 |
-
focus_val = result["completion_status"]["current_focus"] or "Not specified"
|
524 |
-
|
525 |
-
# If we have newly extracted info, let's show it
|
526 |
-
extract_list = result.get("extracted_info", [])
|
527 |
-
if extract_list:
|
528 |
-
analysis = format_extraction_summary(extract_list)
|
529 |
-
else:
|
530 |
-
analysis = result["analysis_text"]
|
531 |
-
|
532 |
-
return history, prog_val, cat_cov, focus_val, analysis
|
533 |
-
|
534 |
-
def generate_report() -> Tuple[Optional[str], Dict[str, Any], str, str]:
|
535 |
-
"""
|
536 |
-
Generate a JSON report of extracted resume info.
|
537 |
-
|
538 |
-
Returns:
|
539 |
-
A tuple of: (filename, extracted_json, focus_message, analysis_text).
|
540 |
-
"""
|
541 |
-
gen_result = extractor.generate_output()
|
542 |
-
if gen_result["status"] == "success":
|
543 |
-
filename = gen_result["filename"]
|
544 |
-
content = gen_result["content"]
|
545 |
-
|
546 |
-
# Summarize categories, etc. for user
|
547 |
-
content_preview = {
|
548 |
-
"summary": content["analysis_summary"],
|
549 |
-
"categories": list(content["extracted_information"].keys()),
|
550 |
-
"total_items": len(content["extracted_information"])
|
551 |
-
}
|
552 |
-
|
553 |
-
# Flatten everything for a final analysis string
|
554 |
-
flat_items = []
|
555 |
-
for cat_key, cat_items in content["extracted_information"].items():
|
556 |
-
for item_data in cat_items:
|
557 |
-
flat_items.append({
|
558 |
-
"category": cat_key,
|
559 |
-
"confidence": item_data["confidence"],
|
560 |
-
"text": item_data["text"]
|
561 |
-
})
|
562 |
-
|
563 |
-
final_analysis = format_extraction_summary(flat_items)
|
564 |
-
return filename, content_preview, "Report generated successfully!", final_analysis
|
565 |
-
else:
|
566 |
-
return None, {"error": gen_result["error"]}, "Error generating report.", "No analysis."
|
567 |
-
|
568 |
-
def clear_interface() -> Tuple[List[Dict[str, str]], float, Dict[str, Any], str, Dict[str, Any], None, str, str]:
|
569 |
-
"""
|
570 |
-
Reset all UI components to their initial state.
|
571 |
-
|
572 |
-
Returns:
|
573 |
-
A tuple specifying the reset states of:
|
574 |
-
- Chatbot
|
575 |
-
- Progress
|
576 |
-
- Categories
|
577 |
-
- Current Focus
|
578 |
-
- Extracted Info
|
579 |
-
- File Output
|
580 |
-
- Analysis
|
581 |
-
- Message Box
|
582 |
-
"""
|
583 |
-
# Re-instantiate the extractor to clear its internal state
|
584 |
-
global extractor
|
585 |
-
extractor = InformationExtractor()
|
586 |
-
|
587 |
-
return [], 0.0, {"categories": []}, "Not started", {}, None, "Ready to start new extraction.", ""
|
588 |
|
589 |
# Bind events
|
590 |
msg.submit(
|
591 |
-
|
592 |
inputs=[msg, chatbot, api_key],
|
593 |
-
outputs=[chatbot,
|
594 |
-
).then(lambda: "", None, msg)
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
inputs=[msg, chatbot, api_key],
|
599 |
-
outputs=[chatbot,
|
600 |
).then(lambda: "", None, msg)
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
outputs=[
|
605 |
-
)
|
606 |
-
|
607 |
-
clear.click(
|
608 |
-
fn=clear_interface,
|
609 |
-
outputs=[
|
610 |
-
chatbot,
|
611 |
-
progress,
|
612 |
-
categories_covered,
|
613 |
-
current_focus,
|
614 |
-
extracted_info,
|
615 |
-
file_output,
|
616 |
-
analysis_text,
|
617 |
-
msg
|
618 |
-
]
|
619 |
)
|
620 |
|
621 |
return demo
|
622 |
|
623 |
-
|
624 |
-
def main() -> None:
|
625 |
-
"""
|
626 |
-
Main function to launch the Gradio application on port 7860, with share=True.
|
627 |
-
"""
|
628 |
-
logging.basicConfig(
|
629 |
-
level=logging.INFO,
|
630 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
631 |
-
)
|
632 |
-
|
633 |
-
demo_app = create_gradio_interface()
|
634 |
-
try:
|
635 |
-
demo_app.launch(
|
636 |
-
server_name="0.0.0.0",
|
637 |
-
server_port=7860,
|
638 |
-
share=True,
|
639 |
-
show_api=False
|
640 |
-
)
|
641 |
-
except Exception as e:
|
642 |
-
logger.error(f"Application failed to start: {str(e)}")
|
643 |
-
|
644 |
-
|
645 |
if __name__ == "__main__":
|
646 |
-
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from typing import Dict, List, Optional, Any, Tuple
|
6 |
from dataclasses import dataclass, field
|
7 |
|
8 |
+
import openai
|
9 |
import gradio as gr
|
10 |
|
11 |
+
# Set up logging
|
12 |
logging.basicConfig(
|
13 |
level=logging.INFO,
|
14 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
15 |
handlers=[
|
16 |
logging.StreamHandler(),
|
17 |
+
logging.FileHandler('loss_dog.log')
|
18 |
]
|
19 |
)
|
20 |
logger = logging.getLogger(__name__)
|
21 |
|
22 |
+
# System Prompts
|
23 |
+
CONVERSATION_PROMPT = '''
|
24 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
25 |
+
<system_prompt>
|
26 |
+
<assistant_identity>
|
27 |
+
<name>LOSS DOG</name>
|
28 |
+
<role>Digital Profile Assistant</role>
|
29 |
+
<purpose>To help users build comprehensive professional and digital presence profiles through natural, comfortable conversation</purpose>
|
30 |
+
</assistant_identity>
|
31 |
+
|
32 |
+
<core_personality>
|
33 |
+
<traits>
|
34 |
+
<trait>Friendly and approachable</trait>
|
35 |
+
<trait>Attentive listener</trait>
|
36 |
+
<trait>Professionally insightful</trait>
|
37 |
+
<trait>Respectful of boundaries</trait>
|
38 |
+
<trait>Naturally curious</trait>
|
39 |
+
</traits>
|
40 |
+
<voice_characteristics>
|
41 |
+
<characteristic>Warm and encouraging</characteristic>
|
42 |
+
<characteristic>Clear and professional</characteristic>
|
43 |
+
<characteristic>Adaptable to user's style</characteristic>
|
44 |
+
</voice_characteristics>
|
45 |
+
</core_personality>
|
46 |
+
|
47 |
+
<information_categories>
|
48 |
+
<category name="professional_background">
|
49 |
+
<fields>
|
50 |
+
<field>Current role and responsibilities</field>
|
51 |
+
<field>Career history and progression</field>
|
52 |
+
<field>Notable achievements</field>
|
53 |
+
<field>Professional goals</field>
|
54 |
+
</fields>
|
55 |
+
<approach>
|
56 |
+
<step>Begin with current role</step>
|
57 |
+
<step>Explore career journey naturally</step>
|
58 |
+
<step>Discuss achievements organically</step>
|
59 |
+
<step>Note specific metrics when shared</step>
|
60 |
+
</approach>
|
61 |
+
</category>
|
62 |
+
|
63 |
+
<category name="education_training">
|
64 |
+
<fields>
|
65 |
+
<field>Formal education</field>
|
66 |
+
<field>Certifications</field>
|
67 |
+
<field>Specialized training</field>
|
68 |
+
<field>Continuous learning</field>
|
69 |
+
</fields>
|
70 |
+
<data_points>
|
71 |
+
<point>Institution names</point>
|
72 |
+
<point>Degree details</point>
|
73 |
+
<point>Time periods</point>
|
74 |
+
<point>Special achievements</point>
|
75 |
+
</data_points>
|
76 |
+
</category>
|
77 |
+
|
78 |
+
<category name="skills_expertise">
|
79 |
+
<fields>
|
80 |
+
<field>Technical skills</field>
|
81 |
+
<field>Soft skills</field>
|
82 |
+
<field>Tools and technologies</field>
|
83 |
+
<field>Domain expertise</field>
|
84 |
+
</fields>
|
85 |
+
<metrics>
|
86 |
+
<metric>Proficiency levels</metric>
|
87 |
+
<metric>Years of experience</metric>
|
88 |
+
<metric>Project applications</metric>
|
89 |
+
</metrics>
|
90 |
+
</category>
|
91 |
+
|
92 |
+
<category name="digital_presence">
|
93 |
+
<fields>
|
94 |
+
<field>Social media impact</field>
|
95 |
+
<field>Content creation</field>
|
96 |
+
<field>Community engagement</field>
|
97 |
+
<field>Digital assets</field>
|
98 |
+
</fields>
|
99 |
+
<metrics>
|
100 |
+
<metric>Follower counts</metric>
|
101 |
+
<metric>Engagement rates</metric>
|
102 |
+
<metric>Content reach</metric>
|
103 |
+
<metric>Portfolio value</metric>
|
104 |
+
</metrics>
|
105 |
+
</category>
|
106 |
+
|
107 |
+
<category name="projects_contributions">
|
108 |
+
<fields>
|
109 |
+
<field>Major projects</field>
|
110 |
+
<field>Open source contributions</field>
|
111 |
+
<field>Creative works</field>
|
112 |
+
<field>Impact metrics</field>
|
113 |
+
</fields>
|
114 |
+
<data_collection>
|
115 |
+
<point>Project descriptions</point>
|
116 |
+
<point>Role and responsibilities</point>
|
117 |
+
<point>Technologies used</point>
|
118 |
+
<point>Measurable outcomes</point>
|
119 |
+
</data_collection>
|
120 |
+
</category>
|
121 |
+
</information_categories>
|
122 |
+
|
123 |
+
<conversation_strategies>
|
124 |
+
<engagement_patterns>
|
125 |
+
<pattern type="initial_contact">
|
126 |
+
<approach>Open with friendly, professional greeting</approach>
|
127 |
+
<focus>Establish comfortable rapport</focus>
|
128 |
+
<goal>Begin natural information gathering</goal>
|
129 |
+
</pattern>
|
130 |
+
|
131 |
+
<pattern type="information_gathering">
|
132 |
+
<approach>Use natural conversation flow</approach>
|
133 |
+
<focus>Follow user's narrative</focus>
|
134 |
+
<goal>Collect relevant details organically</goal>
|
135 |
+
</pattern>
|
136 |
+
|
137 |
+
<pattern type="follow_up">
|
138 |
+
<approach>Ask relevant, contextual questions</approach>
|
139 |
+
<focus>Deepen understanding of shared information</focus>
|
140 |
+
<goal>Gather additional context and details</goal>
|
141 |
+
</pattern>
|
142 |
+
</engagement_patterns>
|
143 |
+
|
144 |
+
<response_handling>
|
145 |
+
<scenario type="shared_information">
|
146 |
+
<action>Acknowledge and validate</action>
|
147 |
+
<action>Note key points</action>
|
148 |
+
<action>Ask natural follow-up if appropriate</action>
|
149 |
+
</scenario>
|
150 |
+
|
151 |
+
<scenario type="hesitation">
|
152 |
+
<action>Respect boundaries</action>
|
153 |
+
<action>Shift to comfortable topics</action>
|
154 |
+
<action>Leave door open for later sharing</action>
|
155 |
+
</scenario>
|
156 |
+
|
157 |
+
<scenario type="completion">
|
158 |
+
<action>Summarize collected information</action>
|
159 |
+
<action>Verify accuracy</action>
|
160 |
+
<action>Transition smoothly to next topic</action>
|
161 |
+
</scenario>
|
162 |
+
</response_handling>
|
163 |
+
</conversation_strategies>
|
164 |
+
|
165 |
+
<output_guidelines>
|
166 |
+
<quality_standards>
|
167 |
+
<standard>Professional language</standard>
|
168 |
+
<standard>Accurate representation</standard>
|
169 |
+
<standard>Structured organization</standard>
|
170 |
+
<standard>Clear categorization</standard>
|
171 |
+
</quality_standards>
|
172 |
+
</output_guidelines>
|
173 |
+
|
174 |
+
<ethics_guidelines>
|
175 |
+
<principle>Respect user privacy</principle>
|
176 |
+
<principle>Never pressure for information</principle>
|
177 |
+
<principle>Maintain professional boundaries</principle>
|
178 |
+
<principle>Ensure data accuracy</principle>
|
179 |
+
</ethics_guidelines>
|
180 |
+
</system_prompt>
|
181 |
+
'''
|
182 |
+
|
183 |
+
EXTRACTION_PROMPT = '''
|
184 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
185 |
+
<system_prompt>
|
186 |
+
<assistant_identity>
|
187 |
+
<name>LOSS DOG - Information Processor</name>
|
188 |
+
<role>Conversation Analyzer and Information Extractor</role>
|
189 |
+
<purpose>Process conversation history to extract and structure professional profile information</purpose>
|
190 |
+
</assistant_identity>
|
191 |
+
|
192 |
+
<task_description>
|
193 |
+
Your task is to analyze the provided conversation history and extract structured profile information:
|
194 |
+
1. Process natural conversation into structured data
|
195 |
+
2. Identify and categorize relevant information
|
196 |
+
3. Make intelligent inferences when appropriate
|
197 |
+
4. Maintain high accuracy and data quality
|
198 |
+
5. Handle messy or non-linear conversation flows
|
199 |
+
</task_description>
|
200 |
+
|
201 |
+
<extraction_guidelines>
|
202 |
+
<primary_objective>
|
203 |
+
Convert conversation data into clean, structured JSON that matches these categories:
|
204 |
+
- personal_info (name, contact, location)
|
205 |
+
- education (degree, institution, field, dates)
|
206 |
+
- work_experience (title, company, duration, responsibilities)
|
207 |
+
- skills (technical, soft_skills, tools)
|
208 |
+
- achievements (awards, publications, projects)
|
209 |
+
- digital_presence (social_media, content_creation, community_impact)
|
210 |
+
</primary_objective>
|
211 |
+
|
212 |
+
<processing_rules>
|
213 |
+
<rule>Focus on factual information over casual conversation</rule>
|
214 |
+
<rule>Handle partial or incomplete information gracefully</rule>
|
215 |
+
<rule>Use context to resolve ambiguities</rule>
|
216 |
+
<rule>Track confidence levels for all extracted data</rule>
|
217 |
+
<rule>Mark any inferred information clearly</rule>
|
218 |
+
<rule>Maintain source context for future reference</rule>
|
219 |
+
</processing_rules>
|
220 |
+
|
221 |
+
<data_handling>
|
222 |
+
<instruction>For each piece of extracted information, provide:
|
223 |
+
- Category classification
|
224 |
+
- Confidence score (0.0-1.0)
|
225 |
+
- Source context (relevant conversation snippet)
|
226 |
+
- List of any inferred fields
|
227 |
+
- Structured data in appropriate format
|
228 |
+
</instruction>
|
229 |
+
</data_handling>
|
230 |
+
</extraction_guidelines>
|
231 |
+
|
232 |
+
<output_format>
|
233 |
+
<format_rules>
|
234 |
+
<rule>Return JSON object with categorized sections</rule>
|
235 |
+
<rule>Include confidence scores (0.0-1.0) for each section</rule>
|
236 |
+
<rule>Mark inferred information with "inferred": true</rule>
|
237 |
+
<rule>Include source context for traceability</rule>
|
238 |
+
<rule>Use consistent date formats (YYYY-MM-DD where possible)</rule>
|
239 |
+
</format_rules>
|
240 |
+
|
241 |
+
<structure>
|
242 |
+
{
|
243 |
+
"category_name": {
|
244 |
+
"data": {
|
245 |
+
// Structured data specific to category
|
246 |
+
},
|
247 |
+
"confidence": float,
|
248 |
+
"source_context": string,
|
249 |
+
"inferred_fields": [string],
|
250 |
+
"metadata": {
|
251 |
+
// Additional category-specific metadata
|
252 |
+
}
|
253 |
+
}
|
254 |
+
}
|
255 |
+
</structure>
|
256 |
+
</output_format>
|
257 |
+
|
258 |
+
<quality_controls>
|
259 |
+
<validations>
|
260 |
+
<validation>Check date consistency and sequences</validation>
|
261 |
+
<validation>Verify logical relationships between entries</validation>
|
262 |
+
<validation>Ensure required fields are present or marked missing</validation>
|
263 |
+
<validation>Confirm confidence scores are justified</validation>
|
264 |
+
</validations>
|
265 |
+
|
266 |
+
<error_handling>
|
267 |
+
<case>Handle conflicting information by preferring most recent/confident</case>
|
268 |
+
<case>Mark ambiguous information with multiple possible interpretations</case>
|
269 |
+
<case>Skip unverifiable information rather than making weak inferences</case>
|
270 |
+
</error_handling>
|
271 |
+
</quality_controls>
|
272 |
+
</system_prompt>
|
273 |
+
'''
|
274 |
|
275 |
@dataclass
|
276 |
+
class ProfileSection:
|
277 |
+
"""Represents a section of the professional profile with structured data."""
|
|
|
278 |
category: str
|
279 |
+
data: Dict[str, Any]
|
280 |
confidence: float
|
281 |
+
source_context: str
|
282 |
+
inferred_fields: List[str] = field(default_factory=list)
|
283 |
+
last_updated: datetime = field(default_factory=datetime.now)
|
284 |
metadata: Dict[str, Any] = field(default_factory=dict)
|
285 |
|
|
|
286 |
@dataclass
|
287 |
class ConversationState:
|
288 |
+
"""Tracks the state of the information gathering conversation."""
|
289 |
+
collected_sections: Dict[str, ProfileSection] = field(default_factory=dict)
|
290 |
+
missing_information: List[str] = field(default_factory=list)
|
291 |
+
conversation_history: List[Dict[str, str]] = field(default_factory=list)
|
292 |
+
completion_status: Dict[str, float] = field(default_factory=dict)
|
293 |
current_focus: Optional[str] = None
|
294 |
+
extraction_history: List[Dict[str, Any]] = field(default_factory=list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
|
296 |
+
class ProfileBuilder:
|
|
|
|
|
|
|
297 |
"""
|
298 |
+
Core class for building professional profiles through conversation and extraction.
|
299 |
+
Implements two-phase approach:
|
300 |
+
1. Interactive conversation for information gathering
|
301 |
+
2. Structured information extraction and processing
|
302 |
+
"""
|
303 |
+
|
304 |
+
def __init__(self):
|
305 |
+
"""Initialize the ProfileBuilder with default settings."""
|
306 |
self.state = ConversationState()
|
307 |
+
self.required_sections = {
|
308 |
+
"personal_info": ["name", "contact", "location"],
|
309 |
+
"education": ["degree", "institution", "field", "dates"],
|
310 |
+
"work_experience": ["title", "company", "duration", "responsibilities"],
|
311 |
+
"skills": ["technical", "soft_skills", "tools"],
|
312 |
+
"achievements": ["awards", "publications", "projects"],
|
313 |
+
"digital_presence": ["platforms", "metrics", "content"]
|
314 |
+
}
|
315 |
self._api_key: Optional[str] = None
|
316 |
+
self._setup_logging()
|
317 |
+
|
318 |
+
def _setup_logging(self) -> None:
|
319 |
+
"""Configure logging for the profile builder."""
|
320 |
+
self.logger = logging.getLogger(__name__)
|
321 |
+
handler = logging.FileHandler('profile_builder.log')
|
322 |
+
handler.setFormatter(logging.Formatter(
|
323 |
+
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
324 |
+
))
|
325 |
+
self.logger.addHandler(handler)
|
326 |
+
self.logger.setLevel(logging.INFO)
|
|
|
|
|
|
|
|
|
|
|
327 |
|
328 |
def _initialize_client(self, api_key: str) -> None:
|
329 |
+
"""Initialize OpenAI client with API key."""
|
|
|
|
|
|
|
|
|
|
|
330 |
try:
|
331 |
+
if not api_key.startswith("sk-"):
|
332 |
+
raise ValueError("Invalid API key format")
|
333 |
+
self._api_key = api_key
|
334 |
+
openai.api_key = api_key
|
335 |
+
self.logger.info("OpenAI client initialized successfully")
|
336 |
except Exception as e:
|
337 |
+
self.logger.error(f"Failed to initialize OpenAI client: {str(e)}")
|
338 |
raise
|
339 |
|
340 |
+
async def _extract_information(self) -> Dict[str, ProfileSection]:
|
341 |
+
"""Extract structured information from the conversation history."""
|
342 |
+
try:
|
343 |
+
# Prepare conversation context
|
344 |
+
conversation_text = "\n".join(
|
345 |
+
f"{msg['role']}: {msg['content']}"
|
346 |
+
for msg in self.state.conversation_history
|
347 |
+
)
|
348 |
+
|
349 |
+
messages = [
|
350 |
+
{"role": "system", "content": EXTRACTION_PROMPT},
|
351 |
+
{"role": "user", "content": f"Extract professional profile information from this conversation:\n\n{conversation_text}"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
]
|
|
|
|
|
|
|
|
|
353 |
|
354 |
+
response = await openai.ChatCompletion.acreate(
|
355 |
+
model="gpt-4",
|
356 |
+
messages=messages,
|
|
|
|
|
|
|
|
|
357 |
temperature=0.3,
|
358 |
+
max_tokens=2000
|
359 |
+
)
|
360 |
+
|
361 |
+
# Parse and validate the response
|
362 |
+
extracted_data = self._parse_extraction_response(response.choices[0].message.content)
|
363 |
+
|
364 |
+
# Convert to ProfileSection objects
|
365 |
+
sections = {}
|
366 |
+
for category, data in extracted_data.items():
|
367 |
+
sections[category] = ProfileSection(
|
368 |
+
category=category,
|
369 |
+
data=data.get("data", {}),
|
370 |
+
confidence=data.get("confidence", 0.0),
|
371 |
+
source_context=data.get("source_context", ""),
|
372 |
+
inferred_fields=data.get("inferred_fields", []),
|
373 |
+
metadata=data.get("metadata", {})
|
374 |
)
|
|
|
375 |
|
376 |
+
# Log extraction results
|
377 |
+
self.logger.info(f"Successfully extracted information for {len(sections)} sections")
|
378 |
+
return sections
|
379 |
|
|
|
|
|
|
|
380 |
except Exception as e:
|
381 |
+
self.logger.error(f"Error in extraction phase: {str(e)}")
|
382 |
+
raise
|
383 |
|
384 |
+
def _parse_extraction_response(self, response_text: str) -> Dict[str, Any]:
|
385 |
+
"""Parse and validate the extraction response."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
try:
|
387 |
+
extracted_data = json.loads(response_text)
|
388 |
+
self._validate_extracted_data(extracted_data)
|
389 |
+
return extracted_data
|
390 |
+
except json.JSONDecodeError as e:
|
391 |
+
self.logger.error(f"Failed to parse extraction response: {str(e)}")
|
392 |
+
return {}
|
393 |
+
except Exception as e:
|
394 |
+
self.logger.error(f"Error processing extraction response: {str(e)}")
|
395 |
+
return {}
|
396 |
+
|
397 |
+
def _validate_extracted_data(self, data: Dict[str, Any]) -> None:
|
398 |
+
"""Validate the structure and content of extracted data."""
|
399 |
+
required_keys = ["data", "confidence", "source_context"]
|
400 |
+
for category, section in data.items():
|
401 |
+
missing_keys = [key for key in required_keys if key not in section]
|
402 |
+
if missing_keys:
|
403 |
+
self.logger.warning(f"Missing required keys {missing_keys} in category {category}")
|
404 |
+
raise ValueError(f"Invalid data structure for category {category}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
|
406 |
+
def _update_completion_status(self) -> None:
|
407 |
+
"""Update the completion status based on collected information."""
|
408 |
+
status = {}
|
409 |
+
for section, required_fields in self.required_sections.items():
|
410 |
+
if section in self.state.collected_sections:
|
411 |
+
profile_section = self.state.collected_sections[section]
|
412 |
+
fields_present = sum(
|
413 |
+
1 for field in required_fields
|
414 |
+
if field in profile_section.data
|
415 |
+
)
|
416 |
+
confidence_factor = profile_section.confidence
|
417 |
+
status[section] = (fields_present / len(required_fields)) * confidence_factor
|
418 |
+
else:
|
419 |
+
status[section] = 0.0
|
420 |
+
|
421 |
+
self.state.completion_status = status
|
422 |
+
self.logger.info(f"Updated completion status: {status}")
|
423 |
+
|
424 |
+
def _get_missing_information(self) -> List[str]:
|
425 |
+
"""Identify missing required information."""
|
426 |
+
missing = []
|
427 |
+
for section, required_fields in self.required_sections.items():
|
428 |
+
if section not in self.state.collected_sections:
|
429 |
+
missing.extend([f"{section}.{field}" for field in required_fields])
|
430 |
+
else:
|
431 |
+
profile_section = self.state.collected_sections[section]
|
432 |
+
missing.extend([
|
433 |
+
f"{section}.{field}"
|
434 |
+
for field in required_fields
|
435 |
+
if field not in profile_section.data
|
436 |
+
])
|
437 |
+
return missing
|
438 |
+
|
439 |
+
async def process_message(self, message: str, api_key: str) -> Dict[str, Any]:
|
440 |
+
"""Process a user message through both conversation and extraction phases."""
|
441 |
+
if not self._api_key:
|
442 |
+
self._initialize_client(api_key)
|
443 |
|
444 |
+
try:
|
445 |
+
# Phase 1: Conversation
|
446 |
+
self.state.conversation_history.append({"role": "user", "content": message})
|
447 |
+
ai_response = await self._get_conversation_response(message)
|
448 |
+
self.state.conversation_history.append({"role": "assistant", "content": ai_response})
|
449 |
+
|
450 |
+
# Phase 2: Information Extraction
|
451 |
+
extracted_sections = await self._extract_information()
|
452 |
+
|
453 |
+
# Update state with new information
|
454 |
+
self.state.collected_sections.update(extracted_sections)
|
455 |
self._update_completion_status()
|
456 |
+
|
457 |
+
# Track extraction history
|
458 |
+
self.state.extraction_history.append({
|
459 |
+
"timestamp": datetime.now().isoformat(),
|
460 |
+
"sections_extracted": list(extracted_sections.keys())
|
461 |
+
})
|
462 |
|
463 |
return {
|
464 |
"response": ai_response,
|
465 |
+
"extracted_sections": {
|
466 |
+
category: {
|
467 |
+
"data": section.data,
|
468 |
+
"confidence": section.confidence,
|
469 |
+
"inferred_fields": section.inferred_fields
|
470 |
}
|
471 |
+
for category, section in extracted_sections.items()
|
|
|
|
|
|
|
|
|
|
|
472 |
},
|
473 |
+
"completion_status": self.state.completion_status,
|
474 |
+
"missing_information": self._get_missing_information()
|
|
|
|
|
|
|
|
|
475 |
}
|
476 |
|
477 |
except Exception as e:
|
478 |
+
self.logger.error(f"Error processing message: {str(e)}")
|
|
|
|
|
479 |
return {
|
480 |
+
"error": str(e),
|
481 |
+
"completion_status": self.state.completion_status
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
482 |
}
|
483 |
|
484 |
+
def generate_profile(self) -> Dict[str, Any]:
|
485 |
+
"""Generate the final structured profile with all collected information."""
|
|
|
|
|
|
|
|
|
|
|
|
|
486 |
try:
|
487 |
+
profile = {
|
488 |
+
"profile_data": {
|
489 |
+
category: {
|
490 |
+
"data": section.data,
|
491 |
+
"confidence": section.confidence,
|
492 |
+
"inferred_fields": section.inferred_fields,
|
493 |
+
"metadata": section.metadata
|
|
|
494 |
}
|
495 |
+
for category, section in self.state.collected_sections.items()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
496 |
},
|
497 |
"metadata": {
|
498 |
"generated_at": datetime.now().isoformat(),
|
499 |
+
"completion_status": self.state.completion_status,
|
500 |
+
"missing_information": self._get_missing_information(),
|
501 |
+
"conversation_length": len(self.state.conversation_history),
|
502 |
+
"extraction_history": self.state.extraction_history
|
503 |
}
|
504 |
}
|
505 |
|
506 |
+
# Save profile to file
|
507 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
508 |
+
filename = f"profile_{timestamp}.json"
|
|
|
|
|
509 |
with open(filename, 'w', encoding='utf-8') as f:
|
510 |
+
json.dump(profile, f, indent=2, ensure_ascii=False)
|
511 |
|
512 |
+
self.logger.info(f"Generated profile saved to {filename}")
|
513 |
return {
|
514 |
+
"profile": profile,
|
515 |
"filename": filename,
|
|
|
516 |
"status": "success"
|
517 |
}
|
518 |
|
519 |
except Exception as e:
|
520 |
+
self.logger.error(f"Error generating profile: {str(e)}")
|
|
|
521 |
return {
|
522 |
+
"error": str(e),
|
523 |
"status": "error"
|
524 |
}
|
525 |
|
|
|
526 |
def create_gradio_interface() -> gr.Blocks:
|
527 |
+
"""Create the Gradio interface for the profile builder."""
|
528 |
+
builder = ProfileBuilder()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
529 |
|
530 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
531 |
+
gr.Markdown("# 🐕 LOSS DOG - Professional Profile Builder")
|
532 |
+
|
533 |
with gr.Row():
|
534 |
with gr.Column(scale=2):
|
535 |
api_key = gr.Textbox(
|
|
|
537 |
type="password",
|
538 |
placeholder="Enter your OpenAI API key (sk-...)"
|
539 |
)
|
540 |
+
|
541 |
chatbot = gr.Chatbot(
|
542 |
label="Conversation",
|
|
|
543 |
height=400
|
544 |
)
|
545 |
+
|
546 |
with gr.Row():
|
547 |
msg = gr.Textbox(
|
548 |
label="Message",
|
549 |
+
placeholder="Chat with LOSS DOG..."
|
550 |
)
|
551 |
+
send = gr.Button("Send", variant="primary")
|
|
|
|
|
|
|
|
|
552 |
|
553 |
with gr.Column(scale=1):
|
554 |
+
with gr.Tabs():
|
555 |
+
with gr.Tab("Extracted Info"):
|
556 |
+
extracted_info = gr.JSON(
|
557 |
+
label="Extracted Information",
|
558 |
+
show_label=True
|
559 |
+
)
|
560 |
+
with gr.Tab("Progress"):
|
561 |
+
completion = gr.JSON(
|
562 |
+
label="Completion Status",
|
563 |
+
show_label=True
|
564 |
+
)
|
565 |
+
missing = gr.JSON(
|
566 |
+
label="Missing Information",
|
567 |
+
show_label=True
|
568 |
+
)
|
569 |
+
|
570 |
+
generate_btn = gr.Button("Generate Profile", variant="secondary")
|
571 |
+
profile_output = gr.JSON(label="Generated Profile")
|
572 |
+
download_btn = gr.File(label="Download Profile")
|
573 |
+
|
574 |
+
# Event handlers
|
575 |
+
async def on_message(message: str, history: List[List[str]], key: str) -> Tuple[Any, Any, Any, Any]:
|
576 |
+
if not message.strip():
|
577 |
+
return history, None, None, None
|
578 |
+
|
579 |
+
result = await builder.process_message(message, key)
|
580 |
+
|
581 |
+
if "error" in result:
|
582 |
+
return history, None, None, {"error": result["error"]}
|
583 |
+
|
584 |
+
history = history + [[message, result["response"]]]
|
585 |
+
|
586 |
+
return (
|
587 |
+
history,
|
588 |
+
result["extracted_sections"],
|
589 |
+
result["completion_status"],
|
590 |
+
result["missing_information"]
|
591 |
+
)
|
592 |
+
|
593 |
+
def on_generate() -> Tuple[Dict[str, Any], str]:
|
594 |
+
result = builder.generate_profile()
|
595 |
+
if result["status"] == "success":
|
596 |
+
return result["profile"], result["filename"]
|
597 |
+
return {"error": result["error"]}, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
598 |
|
599 |
# Bind events
|
600 |
msg.submit(
|
601 |
+
on_message,
|
602 |
inputs=[msg, chatbot, api_key],
|
603 |
+
outputs=[chatbot, extracted_info, completion, missing]
|
604 |
+
).then(lambda: "", None, msg) # Clear message box after sending
|
605 |
+
|
606 |
+
send.click(
|
607 |
+
on_message,
|
608 |
inputs=[msg, chatbot, api_key],
|
609 |
+
outputs=[chatbot, extracted_info, completion, missing]
|
610 |
).then(lambda: "", None, msg)
|
611 |
+
|
612 |
+
generate_btn.click(
|
613 |
+
on_generate,
|
614 |
+
outputs=[profile_output, download_btn]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
615 |
)
|
616 |
|
617 |
return demo
|
618 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
619 |
if __name__ == "__main__":
|
620 |
+
demo = create_gradio_interface()
|
621 |
+
demo.launch(
|
622 |
+
server_name="0.0.0.0",
|
623 |
+
server_port=7860,
|
624 |
+
share=True
|
625 |
+
)
|