Update app.py
Browse files
app.py
CHANGED
@@ -1,346 +1,198 @@
|
|
1 |
import os
|
2 |
-
import requests
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
6 |
import matplotlib.pyplot as plt
|
7 |
import seaborn as sns
|
8 |
-
from typing import Dict, List,
|
|
|
9 |
from dataclasses import dataclass
|
10 |
-
|
|
|
11 |
from sklearn.model_selection import train_test_split
|
12 |
-
from sklearn.metrics import mean_squared_error, r2_score, accuracy_score
|
13 |
-
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
14 |
-
from sklearn.impute import SimpleImputer
|
15 |
import statsmodels.api as sm
|
16 |
-
import plotly.express as px
|
17 |
-
import plotly.graph_objects as go
|
18 |
-
from scipy import stats
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
messages = [
|
43 |
-
{"role": "system", "content": system_prompt},
|
44 |
-
{"role": "user", "content": prompt}
|
45 |
-
]
|
46 |
-
|
47 |
-
response = client.chat.completions.create(
|
48 |
-
model="gpt-4o-mini",
|
49 |
-
messages=messages,
|
50 |
-
max_tokens=500,
|
51 |
-
temperature=0.7
|
52 |
-
)
|
53 |
-
return response.choices[0].message.content
|
54 |
-
except Exception as e:
|
55 |
-
return f"API Error: {str(e)}"
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
"
|
66 |
-
|
67 |
-
|
68 |
-
"stats": stats,
|
69 |
-
"print": lambda *args: state.update({"print_outputs": state["print_outputs"] + " ".join(map(str, args)) + "\n"}),
|
70 |
-
}
|
71 |
-
|
72 |
-
try:
|
73 |
-
exec(code, safe_env, state)
|
74 |
-
return state.get("result", None), state["print_outputs"]
|
75 |
-
except Exception as e:
|
76 |
-
raise RuntimeError(f"Code execution failed: {str(e)}")
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
plt.figure(figsize=(10, 6))
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
elif viz_type == "distribution":
|
97 |
-
for col in columns:
|
98 |
-
sns.histplot(data=df, x=col, kde=True)
|
99 |
-
plt.title(f"Distribution of {col}")
|
100 |
-
elif viz_type == "boxplot":
|
101 |
-
sns.boxplot(data=df[columns])
|
102 |
-
plt.title("Box Plot of Numeric Variables")
|
103 |
-
|
104 |
-
output_path = f"viz_{self.current_iteration}.png"
|
105 |
-
plt.savefig(output_path)
|
106 |
plt.close()
|
107 |
-
|
|
|
|
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
"statistic": stat,
|
119 |
-
"p_value": p_value,
|
120 |
-
"is_normal": p_value > self.config.significance_level
|
121 |
-
}
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
chi2, p_value, _, _ = stats.chi2_contingency(contingency)
|
129 |
-
results[f"chi2_{col1}_{col2}"] = {
|
130 |
-
"statistic": chi2,
|
131 |
-
"p_value": p_value,
|
132 |
-
"is_significant": p_value < self.config.significance_level
|
133 |
-
}
|
134 |
|
135 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
y = df[target_col]
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
('onehot', OneHotEncoder(handle_unknown='ignore'))
|
151 |
-
])
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
])
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
metric = 'r2'
|
165 |
-
|
166 |
-
pipeline = Pipeline([
|
167 |
-
('preprocessor', preprocessor),
|
168 |
-
('model', model)
|
169 |
-
])
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
175 |
|
176 |
-
|
177 |
-
score = accuracy_score(y_test, y_pred)
|
178 |
-
else:
|
179 |
-
score = r2_score(y_test, y_pred)
|
180 |
-
|
181 |
-
return score, metric
|
182 |
-
|
183 |
-
class GradioInterface:
|
184 |
-
"""Gradio interface for the data analysis agent"""
|
185 |
-
|
186 |
-
def __init__(self):
|
187 |
-
self.analyzer = None
|
188 |
-
self.df = None
|
189 |
|
190 |
-
DEFAULT_SYSTEM_PROMPT = """
|
191 |
-
<DataScienceExpertFramework version="1.0">
|
192 |
-
<Identity>
|
193 |
-
<Description>
|
194 |
-
You are an expert data scientist and analyst who combines technical precision with clear communication. You specialize in uncovering insights through advanced statistical analysis, machine learning, and data visualization.
|
195 |
-
</Description>
|
196 |
-
</Identity>
|
197 |
-
<CoreCapabilities>
|
198 |
-
<Analysis>
|
199 |
-
<Capability>Advanced statistical analysis and hypothesis testing</Capability>
|
200 |
-
<Capability>Machine learning model development and evaluation</Capability>
|
201 |
-
<Capability>Data visualization and exploratory data analysis</Capability>
|
202 |
-
<Capability>Pattern recognition and trend identification</Capability>
|
203 |
-
<Capability>Feature engineering and selection</Capability>
|
204 |
-
</Analysis>
|
205 |
-
<Communication>
|
206 |
-
<Style>Clear and precise technical explanations</Style>
|
207 |
-
<Style>Business-oriented insights translation</Style>
|
208 |
-
<Style>Visual representation of complex patterns</Style>
|
209 |
-
</Communication>
|
210 |
-
</CoreCapabilities>
|
211 |
-
<AnalysisApproach>
|
212 |
-
<Step>Data Quality Assessment</Step>
|
213 |
-
<Step>Exploratory Data Analysis</Step>
|
214 |
-
<Step>Statistical Testing</Step>
|
215 |
-
<Step>Pattern Recognition</Step>
|
216 |
-
<Step>Insight Generation</Step>
|
217 |
-
<Step>Visualization Creation</Step>
|
218 |
-
<Step>Recommendations Development</Step>
|
219 |
-
</AnalysisApproach>
|
220 |
-
<OutputGuidelines>
|
221 |
-
<Format>
|
222 |
-
<Section>Key Findings Summary</Section>
|
223 |
-
<Section>Detailed Statistical Analysis</Section>
|
224 |
-
<Section>Visualization Descriptions</Section>
|
225 |
-
<Section>Actionable Recommendations</Section>
|
226 |
-
</Format>
|
227 |
-
<Standards>
|
228 |
-
<Standard>Always explain statistical significance</Standard>
|
229 |
-
<Standard>Provide context for numerical findings</Standard>
|
230 |
-
<Standard>Highlight practical implications</Standard>
|
231 |
-
<Standard>Address data limitations</Standard>
|
232 |
-
</Standards>
|
233 |
-
</OutputGuidelines>
|
234 |
-
</DataScienceExpertFramework>
|
235 |
-
"""
|
236 |
-
|
237 |
-
def create_interface(self):
|
238 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
239 |
-
gr.Markdown("# 🔍 Intelligent Data Analysis Agent")
|
240 |
-
|
241 |
-
with gr.Row():
|
242 |
-
with gr.Column(scale=1):
|
243 |
-
api_key = gr.Textbox(
|
244 |
-
label="GPT-4o-mini API Key",
|
245 |
-
type="password",
|
246 |
-
placeholder="sk-..."
|
247 |
-
)
|
248 |
-
file_input = gr.File(
|
249 |
-
label="Upload CSV file"
|
250 |
-
)
|
251 |
-
|
252 |
-
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
253 |
-
system_prompt = gr.TextArea(
|
254 |
-
label="System Prompt",
|
255 |
-
value=DEFAULT_SYSTEM_PROMPT,
|
256 |
-
lines=8
|
257 |
-
)
|
258 |
-
|
259 |
-
with gr.Row():
|
260 |
-
analysis_notes = gr.Textbox(
|
261 |
-
label="Analysis Notes (Optional)",
|
262 |
-
placeholder="Any specific analysis preferences...")
|
263 |
-
|
264 |
-
with gr.Row():
|
265 |
-
analyze_btn = gr.Button("Analyze Data")
|
266 |
-
clear_btn = gr.Button("Clear")
|
267 |
-
|
268 |
-
output_text = gr.Markdown()
|
269 |
-
output_gallery = gr.Gallery()
|
270 |
-
|
271 |
-
def analyze(api_key, file, notes, system_prompt):
|
272 |
-
if not api_key or not file:
|
273 |
-
return "Please provide both API key and data file.", None
|
274 |
-
|
275 |
-
try:
|
276 |
-
self.df = pd.read_csv(file.name)
|
277 |
-
self.analyzer = DataAnalyzer(api_key)
|
278 |
-
|
279 |
-
# Get AI suggestions for analysis
|
280 |
-
prompt = f"Data columns: {list(self.df.columns)}\nUser notes: {notes}\nSuggest appropriate analyses and visualizations."
|
281 |
-
ai_suggestions = self.analyzer.call_gpt4o_mini(prompt)
|
282 |
-
|
283 |
-
# Perform analysis
|
284 |
-
data_types = self.analyzer.analyze_data_types(self.df)
|
285 |
-
stats_results = self.analyzer.perform_statistical_tests(self.df, data_types)
|
286 |
-
|
287 |
-
# Create visualizations
|
288 |
-
viz_paths = []
|
289 |
-
for viz_type in ["correlation", "distribution", "boxplot"]:
|
290 |
-
if data_types["numeric_cols"]:
|
291 |
-
path = self.analyzer.create_visualization(
|
292 |
-
self.df, viz_type, data_types["numeric_cols"]
|
293 |
-
)
|
294 |
-
viz_paths.append(path)
|
295 |
-
|
296 |
-
# Generate summary
|
297 |
-
summary = f"""
|
298 |
-
## Data Analysis Results
|
299 |
-
|
300 |
-
### AI Suggestions
|
301 |
-
{ai_suggestions}
|
302 |
-
|
303 |
-
### Basic Statistics
|
304 |
-
- Rows: {len(self.df)}
|
305 |
-
- Columns: {len(self.df.columns)}
|
306 |
-
- Missing Values: {sum(data_types['missing_values'].values())}
|
307 |
-
|
308 |
-
### Statistical Tests
|
309 |
-
{self._format_stats_results(stats_results)}
|
310 |
-
"""
|
311 |
-
|
312 |
-
return summary, viz_paths
|
313 |
-
|
314 |
-
except Exception as e:
|
315 |
-
return f"Error during analysis: {str(e)}", None
|
316 |
-
|
317 |
-
analyze_btn.click(
|
318 |
-
analyze,
|
319 |
-
inputs=[api_key, file_input, analysis_notes, system_prompt],
|
320 |
-
outputs=[output_text, output_gallery]
|
321 |
-
)
|
322 |
-
|
323 |
-
clear_btn.click(
|
324 |
-
lambda: (None, None),
|
325 |
-
outputs=[output_text, output_gallery]
|
326 |
-
)
|
327 |
-
|
328 |
return demo
|
329 |
-
|
330 |
-
|
331 |
-
def _format_stats_results(results: Dict) -> str:
|
332 |
-
"""Format statistical results for display"""
|
333 |
-
formatted = []
|
334 |
-
for test_name, result in results.items():
|
335 |
-
if "normality" in test_name:
|
336 |
-
formatted.append(f"- {test_name}: {'Normal' if result['is_normal'] else 'Non-normal'} "
|
337 |
-
f"(p={result['p_value']:.4f})")
|
338 |
-
elif "chi2" in test_name:
|
339 |
-
formatted.append(f"- {test_name}: {'Significant' if result['is_significant'] else 'Not significant'} "
|
340 |
-
f"(p={result['p_value']:.4f})")
|
341 |
-
return "\n".join(formatted)
|
342 |
|
343 |
if __name__ == "__main__":
|
344 |
-
|
345 |
-
|
346 |
-
demo.launch(
|
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
5 |
import matplotlib.pyplot as plt
|
6 |
import seaborn as sns
|
7 |
+
from typing import Dict, List, Optional
|
8 |
+
import openai
|
9 |
from dataclasses import dataclass
|
10 |
+
import plotly.express as px
|
11 |
+
from sklearn.preprocessing import StandardScaler
|
12 |
from sklearn.model_selection import train_test_split
|
|
|
|
|
|
|
13 |
import statsmodels.api as sm
|
|
|
|
|
|
|
14 |
|
15 |
+
# System prompt for data analysis
|
16 |
+
DATA_ANALYSIS_PROMPT = """
|
17 |
+
<DataScienceExpertFramework version="1.0">
|
18 |
+
<Identity>
|
19 |
+
<Description>You are an expert data scientist who combines technical precision with clear insights.</Description>
|
20 |
+
</Identity>
|
21 |
+
<CoreCapabilities>
|
22 |
+
<Analysis>
|
23 |
+
<Capability>Statistical analysis and hypothesis testing</Capability>
|
24 |
+
<Capability>Pattern recognition and insights</Capability>
|
25 |
+
<Capability>Data visualization recommendations</Capability>
|
26 |
+
</Analysis>
|
27 |
+
</CoreCapabilities>
|
28 |
+
<AnalysisApproach>
|
29 |
+
<Step>Assess data quality and structure</Step>
|
30 |
+
<Step>Identify key patterns and relationships</Step>
|
31 |
+
<Step>Perform statistical analysis</Step>
|
32 |
+
<Step>Generate visualizations</Step>
|
33 |
+
<Step>Provide actionable insights</Step>
|
34 |
+
</AnalysisApproach>
|
35 |
+
</DataScienceExpertFramework>
|
36 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
def format_stats_results(results: Dict) -> str:
|
39 |
+
"""Format statistical results for display"""
|
40 |
+
formatted = []
|
41 |
+
for test_name, result in results.items():
|
42 |
+
if "normality" in test_name:
|
43 |
+
formatted.append(f"- {test_name}: {'Normal' if result['is_normal'] else 'Non-normal'} "
|
44 |
+
f"(p={result['p_value']:.4f})")
|
45 |
+
elif "correlation" in test_name:
|
46 |
+
formatted.append(f"- {test_name}: {result['correlation']:.4f} "
|
47 |
+
f"(p={result['p_value']:.4f})")
|
48 |
+
return "\n".join(formatted)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
def analyze_data(df: pd.DataFrame) -> Dict:
|
51 |
+
"""Analyze dataframe and return statistics"""
|
52 |
+
analysis = {
|
53 |
+
"shape": df.shape,
|
54 |
+
"dtypes": df.dtypes.to_dict(),
|
55 |
+
"missing": df.isnull().sum().to_dict(),
|
56 |
+
"numeric_summary": df.describe().to_dict(),
|
57 |
+
"correlations": {}
|
58 |
+
}
|
59 |
+
|
60 |
+
# Calculate correlations for numeric columns
|
61 |
+
numeric_cols = df.select_dtypes(include=[np.number]).columns
|
62 |
+
if len(numeric_cols) >= 2:
|
63 |
+
corr_matrix = df[numeric_cols].corr()
|
64 |
+
analysis["correlations"] = corr_matrix.to_dict()
|
65 |
+
|
66 |
+
return analysis
|
67 |
|
68 |
+
def create_visualizations(df: pd.DataFrame, save_dir: str = "figures") -> List[str]:
|
69 |
+
"""Create and save visualizations"""
|
70 |
+
os.makedirs(save_dir, exist_ok=True)
|
71 |
+
paths = []
|
72 |
+
|
73 |
+
# Correlation heatmap
|
74 |
+
numeric_cols = df.select_dtypes(include=[np.number]).columns
|
75 |
+
if len(numeric_cols) >= 2:
|
76 |
+
plt.figure(figsize=(10, 8))
|
77 |
+
sns.heatmap(df[numeric_cols].corr(), annot=True, cmap='coolwarm')
|
78 |
+
plt.title("Correlation Heatmap")
|
79 |
+
path = os.path.join(save_dir, "correlation_heatmap.png")
|
80 |
+
plt.savefig(path)
|
81 |
+
plt.close()
|
82 |
+
paths.append(path)
|
83 |
+
|
84 |
+
# Distribution plots for numeric columns
|
85 |
+
for col in numeric_cols[:5]: # Limit to first 5 columns
|
86 |
plt.figure(figsize=(10, 6))
|
87 |
+
sns.histplot(df[col], kde=True)
|
88 |
+
plt.title(f"Distribution of {col}")
|
89 |
+
path = os.path.join(save_dir, f"dist_{col}.png")
|
90 |
+
plt.savefig(path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
plt.close()
|
92 |
+
paths.append(path)
|
93 |
+
|
94 |
+
return paths
|
95 |
|
96 |
+
def chat_with_data_scientist(message: str, history: List, api_key: str, df: Optional[pd.DataFrame] = None) -> List:
|
97 |
+
"""Chat with GPT-4o-mini about data analysis"""
|
98 |
+
if not api_key:
|
99 |
+
return history + [
|
100 |
+
("Please provide an API key to continue.", None)
|
101 |
+
]
|
102 |
+
|
103 |
+
if df is None:
|
104 |
+
return history + [
|
105 |
+
("Please upload a CSV file to analyze.", None)
|
106 |
+
]
|
107 |
+
|
108 |
+
try:
|
109 |
+
client = openai.OpenAI(api_key=api_key)
|
110 |
+
|
111 |
+
# Create analysis summary
|
112 |
+
analysis = analyze_data(df)
|
113 |
+
analysis_text = f"""
|
114 |
+
Dataset Shape: {analysis['shape']}
|
115 |
+
Missing Values: {sum(analysis['missing'].values())}
|
116 |
+
Numeric Columns: {list(analysis['numeric_summary'].keys())}
|
117 |
+
"""
|
118 |
|
119 |
+
messages = [
|
120 |
+
{"role": "system", "content": DATA_ANALYSIS_PROMPT},
|
121 |
+
{"role": "system", "content": f"Analysis Context:\n{analysis_text}"},
|
122 |
+
{"role": "user", "content": message}
|
123 |
+
]
|
|
|
|
|
|
|
|
|
124 |
|
125 |
+
response = client.chat.completions.create(
|
126 |
+
model="gpt-4o-mini",
|
127 |
+
messages=messages,
|
128 |
+
max_tokens=500
|
129 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
+
return history + [
|
132 |
+
(message, response.choices[0].message.content)
|
133 |
+
]
|
134 |
+
|
135 |
+
except Exception as e:
|
136 |
+
return history + [
|
137 |
+
(message, f"Error: {str(e)}")
|
138 |
+
]
|
139 |
|
140 |
+
def create_demo():
|
141 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
142 |
+
gr.Markdown("# 🔬 Data Science Expert")
|
|
|
143 |
|
144 |
+
with gr.Row():
|
145 |
+
with gr.Column():
|
146 |
+
api_key = gr.Textbox(
|
147 |
+
label="GPT-4o-mini API Key",
|
148 |
+
placeholder="sk-...",
|
149 |
+
type="password"
|
150 |
+
)
|
151 |
+
file_input = gr.File(
|
152 |
+
label="Upload CSV file",
|
153 |
+
file_types=[".csv"]
|
154 |
+
)
|
155 |
+
system_prompt = gr.Textbox(
|
156 |
+
label="System Prompt",
|
157 |
+
value=DATA_ANALYSIS_PROMPT,
|
158 |
+
lines=5
|
159 |
+
)
|
160 |
+
|
161 |
+
with gr.Column():
|
162 |
+
chat = gr.Chatbot(label="Analysis Chat")
|
163 |
+
msg = gr.Textbox(
|
164 |
+
label="Ask about your data",
|
165 |
+
placeholder="What insights can you find in this dataset?"
|
166 |
+
)
|
167 |
+
clear = gr.Button("Clear")
|
168 |
|
169 |
+
# Store DataFrame in state
|
170 |
+
df_state = gr.State(None)
|
|
|
|
|
171 |
|
172 |
+
def process_file(file):
|
173 |
+
if file is None:
|
174 |
+
return None
|
175 |
+
return pd.read_csv(file.name)
|
|
|
176 |
|
177 |
+
file_input.change(
|
178 |
+
process_file,
|
179 |
+
inputs=[file_input],
|
180 |
+
outputs=[df_state]
|
181 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
+
msg.submit(
|
184 |
+
chat_with_data_scientist,
|
185 |
+
inputs=[msg, chat, api_key, df_state],
|
186 |
+
outputs=[chat]
|
187 |
+
)
|
188 |
|
189 |
+
clear.click(lambda: None, None, chat)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
return demo
|
192 |
+
|
193 |
+
demo = create_demo()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
if __name__ == "__main__":
|
196 |
+
demo.launch()
|
197 |
+
else:
|
198 |
+
demo.launch(show_api=False)
|