Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,346 +1,198 @@
|
|
| 1 |
import os
|
| 2 |
-
import requests
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
| 5 |
import numpy as np
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
import seaborn as sns
|
| 8 |
-
from typing import Dict, List,
|
|
|
|
| 9 |
from dataclasses import dataclass
|
| 10 |
-
|
|
|
|
| 11 |
from sklearn.model_selection import train_test_split
|
| 12 |
-
from sklearn.metrics import mean_squared_error, r2_score, accuracy_score
|
| 13 |
-
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
| 14 |
-
from sklearn.impute import SimpleImputer
|
| 15 |
import statsmodels.api as sm
|
| 16 |
-
import plotly.express as px
|
| 17 |
-
import plotly.graph_objects as go
|
| 18 |
-
from scipy import stats
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
messages = [
|
| 43 |
-
{"role": "system", "content": system_prompt},
|
| 44 |
-
{"role": "user", "content": prompt}
|
| 45 |
-
]
|
| 46 |
-
|
| 47 |
-
response = client.chat.completions.create(
|
| 48 |
-
model="gpt-4o-mini",
|
| 49 |
-
messages=messages,
|
| 50 |
-
max_tokens=500,
|
| 51 |
-
temperature=0.7
|
| 52 |
-
)
|
| 53 |
-
return response.choices[0].message.content
|
| 54 |
-
except Exception as e:
|
| 55 |
-
return f"API Error: {str(e)}"
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
"
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
"stats": stats,
|
| 69 |
-
"print": lambda *args: state.update({"print_outputs": state["print_outputs"] + " ".join(map(str, args)) + "\n"}),
|
| 70 |
-
}
|
| 71 |
-
|
| 72 |
-
try:
|
| 73 |
-
exec(code, safe_env, state)
|
| 74 |
-
return state.get("result", None), state["print_outputs"]
|
| 75 |
-
except Exception as e:
|
| 76 |
-
raise RuntimeError(f"Code execution failed: {str(e)}")
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
plt.figure(figsize=(10, 6))
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
elif viz_type == "distribution":
|
| 97 |
-
for col in columns:
|
| 98 |
-
sns.histplot(data=df, x=col, kde=True)
|
| 99 |
-
plt.title(f"Distribution of {col}")
|
| 100 |
-
elif viz_type == "boxplot":
|
| 101 |
-
sns.boxplot(data=df[columns])
|
| 102 |
-
plt.title("Box Plot of Numeric Variables")
|
| 103 |
-
|
| 104 |
-
output_path = f"viz_{self.current_iteration}.png"
|
| 105 |
-
plt.savefig(output_path)
|
| 106 |
plt.close()
|
| 107 |
-
|
|
|
|
|
|
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
"statistic": stat,
|
| 119 |
-
"p_value": p_value,
|
| 120 |
-
"is_normal": p_value > self.config.significance_level
|
| 121 |
-
}
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
chi2, p_value, _, _ = stats.chi2_contingency(contingency)
|
| 129 |
-
results[f"chi2_{col1}_{col2}"] = {
|
| 130 |
-
"statistic": chi2,
|
| 131 |
-
"p_value": p_value,
|
| 132 |
-
"is_significant": p_value < self.config.significance_level
|
| 133 |
-
}
|
| 134 |
|
| 135 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
y = df[target_col]
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
('onehot', OneHotEncoder(handle_unknown='ignore'))
|
| 151 |
-
])
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
])
|
| 158 |
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
metric = 'r2'
|
| 165 |
-
|
| 166 |
-
pipeline = Pipeline([
|
| 167 |
-
('preprocessor', preprocessor),
|
| 168 |
-
('model', model)
|
| 169 |
-
])
|
| 170 |
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
|
|
|
| 175 |
|
| 176 |
-
|
| 177 |
-
score = accuracy_score(y_test, y_pred)
|
| 178 |
-
else:
|
| 179 |
-
score = r2_score(y_test, y_pred)
|
| 180 |
-
|
| 181 |
-
return score, metric
|
| 182 |
-
|
| 183 |
-
class GradioInterface:
|
| 184 |
-
"""Gradio interface for the data analysis agent"""
|
| 185 |
-
|
| 186 |
-
def __init__(self):
|
| 187 |
-
self.analyzer = None
|
| 188 |
-
self.df = None
|
| 189 |
|
| 190 |
-
DEFAULT_SYSTEM_PROMPT = """
|
| 191 |
-
<DataScienceExpertFramework version="1.0">
|
| 192 |
-
<Identity>
|
| 193 |
-
<Description>
|
| 194 |
-
You are an expert data scientist and analyst who combines technical precision with clear communication. You specialize in uncovering insights through advanced statistical analysis, machine learning, and data visualization.
|
| 195 |
-
</Description>
|
| 196 |
-
</Identity>
|
| 197 |
-
<CoreCapabilities>
|
| 198 |
-
<Analysis>
|
| 199 |
-
<Capability>Advanced statistical analysis and hypothesis testing</Capability>
|
| 200 |
-
<Capability>Machine learning model development and evaluation</Capability>
|
| 201 |
-
<Capability>Data visualization and exploratory data analysis</Capability>
|
| 202 |
-
<Capability>Pattern recognition and trend identification</Capability>
|
| 203 |
-
<Capability>Feature engineering and selection</Capability>
|
| 204 |
-
</Analysis>
|
| 205 |
-
<Communication>
|
| 206 |
-
<Style>Clear and precise technical explanations</Style>
|
| 207 |
-
<Style>Business-oriented insights translation</Style>
|
| 208 |
-
<Style>Visual representation of complex patterns</Style>
|
| 209 |
-
</Communication>
|
| 210 |
-
</CoreCapabilities>
|
| 211 |
-
<AnalysisApproach>
|
| 212 |
-
<Step>Data Quality Assessment</Step>
|
| 213 |
-
<Step>Exploratory Data Analysis</Step>
|
| 214 |
-
<Step>Statistical Testing</Step>
|
| 215 |
-
<Step>Pattern Recognition</Step>
|
| 216 |
-
<Step>Insight Generation</Step>
|
| 217 |
-
<Step>Visualization Creation</Step>
|
| 218 |
-
<Step>Recommendations Development</Step>
|
| 219 |
-
</AnalysisApproach>
|
| 220 |
-
<OutputGuidelines>
|
| 221 |
-
<Format>
|
| 222 |
-
<Section>Key Findings Summary</Section>
|
| 223 |
-
<Section>Detailed Statistical Analysis</Section>
|
| 224 |
-
<Section>Visualization Descriptions</Section>
|
| 225 |
-
<Section>Actionable Recommendations</Section>
|
| 226 |
-
</Format>
|
| 227 |
-
<Standards>
|
| 228 |
-
<Standard>Always explain statistical significance</Standard>
|
| 229 |
-
<Standard>Provide context for numerical findings</Standard>
|
| 230 |
-
<Standard>Highlight practical implications</Standard>
|
| 231 |
-
<Standard>Address data limitations</Standard>
|
| 232 |
-
</Standards>
|
| 233 |
-
</OutputGuidelines>
|
| 234 |
-
</DataScienceExpertFramework>
|
| 235 |
-
"""
|
| 236 |
-
|
| 237 |
-
def create_interface(self):
|
| 238 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 239 |
-
gr.Markdown("# 🔍 Intelligent Data Analysis Agent")
|
| 240 |
-
|
| 241 |
-
with gr.Row():
|
| 242 |
-
with gr.Column(scale=1):
|
| 243 |
-
api_key = gr.Textbox(
|
| 244 |
-
label="GPT-4o-mini API Key",
|
| 245 |
-
type="password",
|
| 246 |
-
placeholder="sk-..."
|
| 247 |
-
)
|
| 248 |
-
file_input = gr.File(
|
| 249 |
-
label="Upload CSV file"
|
| 250 |
-
)
|
| 251 |
-
|
| 252 |
-
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
| 253 |
-
system_prompt = gr.TextArea(
|
| 254 |
-
label="System Prompt",
|
| 255 |
-
value=DEFAULT_SYSTEM_PROMPT,
|
| 256 |
-
lines=8
|
| 257 |
-
)
|
| 258 |
-
|
| 259 |
-
with gr.Row():
|
| 260 |
-
analysis_notes = gr.Textbox(
|
| 261 |
-
label="Analysis Notes (Optional)",
|
| 262 |
-
placeholder="Any specific analysis preferences...")
|
| 263 |
-
|
| 264 |
-
with gr.Row():
|
| 265 |
-
analyze_btn = gr.Button("Analyze Data")
|
| 266 |
-
clear_btn = gr.Button("Clear")
|
| 267 |
-
|
| 268 |
-
output_text = gr.Markdown()
|
| 269 |
-
output_gallery = gr.Gallery()
|
| 270 |
-
|
| 271 |
-
def analyze(api_key, file, notes, system_prompt):
|
| 272 |
-
if not api_key or not file:
|
| 273 |
-
return "Please provide both API key and data file.", None
|
| 274 |
-
|
| 275 |
-
try:
|
| 276 |
-
self.df = pd.read_csv(file.name)
|
| 277 |
-
self.analyzer = DataAnalyzer(api_key)
|
| 278 |
-
|
| 279 |
-
# Get AI suggestions for analysis
|
| 280 |
-
prompt = f"Data columns: {list(self.df.columns)}\nUser notes: {notes}\nSuggest appropriate analyses and visualizations."
|
| 281 |
-
ai_suggestions = self.analyzer.call_gpt4o_mini(prompt)
|
| 282 |
-
|
| 283 |
-
# Perform analysis
|
| 284 |
-
data_types = self.analyzer.analyze_data_types(self.df)
|
| 285 |
-
stats_results = self.analyzer.perform_statistical_tests(self.df, data_types)
|
| 286 |
-
|
| 287 |
-
# Create visualizations
|
| 288 |
-
viz_paths = []
|
| 289 |
-
for viz_type in ["correlation", "distribution", "boxplot"]:
|
| 290 |
-
if data_types["numeric_cols"]:
|
| 291 |
-
path = self.analyzer.create_visualization(
|
| 292 |
-
self.df, viz_type, data_types["numeric_cols"]
|
| 293 |
-
)
|
| 294 |
-
viz_paths.append(path)
|
| 295 |
-
|
| 296 |
-
# Generate summary
|
| 297 |
-
summary = f"""
|
| 298 |
-
## Data Analysis Results
|
| 299 |
-
|
| 300 |
-
### AI Suggestions
|
| 301 |
-
{ai_suggestions}
|
| 302 |
-
|
| 303 |
-
### Basic Statistics
|
| 304 |
-
- Rows: {len(self.df)}
|
| 305 |
-
- Columns: {len(self.df.columns)}
|
| 306 |
-
- Missing Values: {sum(data_types['missing_values'].values())}
|
| 307 |
-
|
| 308 |
-
### Statistical Tests
|
| 309 |
-
{self._format_stats_results(stats_results)}
|
| 310 |
-
"""
|
| 311 |
-
|
| 312 |
-
return summary, viz_paths
|
| 313 |
-
|
| 314 |
-
except Exception as e:
|
| 315 |
-
return f"Error during analysis: {str(e)}", None
|
| 316 |
-
|
| 317 |
-
analyze_btn.click(
|
| 318 |
-
analyze,
|
| 319 |
-
inputs=[api_key, file_input, analysis_notes, system_prompt],
|
| 320 |
-
outputs=[output_text, output_gallery]
|
| 321 |
-
)
|
| 322 |
-
|
| 323 |
-
clear_btn.click(
|
| 324 |
-
lambda: (None, None),
|
| 325 |
-
outputs=[output_text, output_gallery]
|
| 326 |
-
)
|
| 327 |
-
|
| 328 |
return demo
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
def _format_stats_results(results: Dict) -> str:
|
| 332 |
-
"""Format statistical results for display"""
|
| 333 |
-
formatted = []
|
| 334 |
-
for test_name, result in results.items():
|
| 335 |
-
if "normality" in test_name:
|
| 336 |
-
formatted.append(f"- {test_name}: {'Normal' if result['is_normal'] else 'Non-normal'} "
|
| 337 |
-
f"(p={result['p_value']:.4f})")
|
| 338 |
-
elif "chi2" in test_name:
|
| 339 |
-
formatted.append(f"- {test_name}: {'Significant' if result['is_significant'] else 'Not significant'} "
|
| 340 |
-
f"(p={result['p_value']:.4f})")
|
| 341 |
-
return "\n".join(formatted)
|
| 342 |
|
| 343 |
if __name__ == "__main__":
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
demo.launch(
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import pandas as pd
|
| 4 |
import numpy as np
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
import seaborn as sns
|
| 7 |
+
from typing import Dict, List, Optional
|
| 8 |
+
import openai
|
| 9 |
from dataclasses import dataclass
|
| 10 |
+
import plotly.express as px
|
| 11 |
+
from sklearn.preprocessing import StandardScaler
|
| 12 |
from sklearn.model_selection import train_test_split
|
|
|
|
|
|
|
|
|
|
| 13 |
import statsmodels.api as sm
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# System prompt for data analysis
|
| 16 |
+
DATA_ANALYSIS_PROMPT = """
|
| 17 |
+
<DataScienceExpertFramework version="1.0">
|
| 18 |
+
<Identity>
|
| 19 |
+
<Description>You are an expert data scientist who combines technical precision with clear insights.</Description>
|
| 20 |
+
</Identity>
|
| 21 |
+
<CoreCapabilities>
|
| 22 |
+
<Analysis>
|
| 23 |
+
<Capability>Statistical analysis and hypothesis testing</Capability>
|
| 24 |
+
<Capability>Pattern recognition and insights</Capability>
|
| 25 |
+
<Capability>Data visualization recommendations</Capability>
|
| 26 |
+
</Analysis>
|
| 27 |
+
</CoreCapabilities>
|
| 28 |
+
<AnalysisApproach>
|
| 29 |
+
<Step>Assess data quality and structure</Step>
|
| 30 |
+
<Step>Identify key patterns and relationships</Step>
|
| 31 |
+
<Step>Perform statistical analysis</Step>
|
| 32 |
+
<Step>Generate visualizations</Step>
|
| 33 |
+
<Step>Provide actionable insights</Step>
|
| 34 |
+
</AnalysisApproach>
|
| 35 |
+
</DataScienceExpertFramework>
|
| 36 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
def format_stats_results(results: Dict) -> str:
|
| 39 |
+
"""Format statistical results for display"""
|
| 40 |
+
formatted = []
|
| 41 |
+
for test_name, result in results.items():
|
| 42 |
+
if "normality" in test_name:
|
| 43 |
+
formatted.append(f"- {test_name}: {'Normal' if result['is_normal'] else 'Non-normal'} "
|
| 44 |
+
f"(p={result['p_value']:.4f})")
|
| 45 |
+
elif "correlation" in test_name:
|
| 46 |
+
formatted.append(f"- {test_name}: {result['correlation']:.4f} "
|
| 47 |
+
f"(p={result['p_value']:.4f})")
|
| 48 |
+
return "\n".join(formatted)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
def analyze_data(df: pd.DataFrame) -> Dict:
|
| 51 |
+
"""Analyze dataframe and return statistics"""
|
| 52 |
+
analysis = {
|
| 53 |
+
"shape": df.shape,
|
| 54 |
+
"dtypes": df.dtypes.to_dict(),
|
| 55 |
+
"missing": df.isnull().sum().to_dict(),
|
| 56 |
+
"numeric_summary": df.describe().to_dict(),
|
| 57 |
+
"correlations": {}
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
# Calculate correlations for numeric columns
|
| 61 |
+
numeric_cols = df.select_dtypes(include=[np.number]).columns
|
| 62 |
+
if len(numeric_cols) >= 2:
|
| 63 |
+
corr_matrix = df[numeric_cols].corr()
|
| 64 |
+
analysis["correlations"] = corr_matrix.to_dict()
|
| 65 |
+
|
| 66 |
+
return analysis
|
| 67 |
|
| 68 |
+
def create_visualizations(df: pd.DataFrame, save_dir: str = "figures") -> List[str]:
|
| 69 |
+
"""Create and save visualizations"""
|
| 70 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 71 |
+
paths = []
|
| 72 |
+
|
| 73 |
+
# Correlation heatmap
|
| 74 |
+
numeric_cols = df.select_dtypes(include=[np.number]).columns
|
| 75 |
+
if len(numeric_cols) >= 2:
|
| 76 |
+
plt.figure(figsize=(10, 8))
|
| 77 |
+
sns.heatmap(df[numeric_cols].corr(), annot=True, cmap='coolwarm')
|
| 78 |
+
plt.title("Correlation Heatmap")
|
| 79 |
+
path = os.path.join(save_dir, "correlation_heatmap.png")
|
| 80 |
+
plt.savefig(path)
|
| 81 |
+
plt.close()
|
| 82 |
+
paths.append(path)
|
| 83 |
+
|
| 84 |
+
# Distribution plots for numeric columns
|
| 85 |
+
for col in numeric_cols[:5]: # Limit to first 5 columns
|
| 86 |
plt.figure(figsize=(10, 6))
|
| 87 |
+
sns.histplot(df[col], kde=True)
|
| 88 |
+
plt.title(f"Distribution of {col}")
|
| 89 |
+
path = os.path.join(save_dir, f"dist_{col}.png")
|
| 90 |
+
plt.savefig(path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
plt.close()
|
| 92 |
+
paths.append(path)
|
| 93 |
+
|
| 94 |
+
return paths
|
| 95 |
|
| 96 |
+
def chat_with_data_scientist(message: str, history: List, api_key: str, df: Optional[pd.DataFrame] = None) -> List:
|
| 97 |
+
"""Chat with GPT-4o-mini about data analysis"""
|
| 98 |
+
if not api_key:
|
| 99 |
+
return history + [
|
| 100 |
+
("Please provide an API key to continue.", None)
|
| 101 |
+
]
|
| 102 |
+
|
| 103 |
+
if df is None:
|
| 104 |
+
return history + [
|
| 105 |
+
("Please upload a CSV file to analyze.", None)
|
| 106 |
+
]
|
| 107 |
+
|
| 108 |
+
try:
|
| 109 |
+
client = openai.OpenAI(api_key=api_key)
|
| 110 |
+
|
| 111 |
+
# Create analysis summary
|
| 112 |
+
analysis = analyze_data(df)
|
| 113 |
+
analysis_text = f"""
|
| 114 |
+
Dataset Shape: {analysis['shape']}
|
| 115 |
+
Missing Values: {sum(analysis['missing'].values())}
|
| 116 |
+
Numeric Columns: {list(analysis['numeric_summary'].keys())}
|
| 117 |
+
"""
|
| 118 |
|
| 119 |
+
messages = [
|
| 120 |
+
{"role": "system", "content": DATA_ANALYSIS_PROMPT},
|
| 121 |
+
{"role": "system", "content": f"Analysis Context:\n{analysis_text}"},
|
| 122 |
+
{"role": "user", "content": message}
|
| 123 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
+
response = client.chat.completions.create(
|
| 126 |
+
model="gpt-4o-mini",
|
| 127 |
+
messages=messages,
|
| 128 |
+
max_tokens=500
|
| 129 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
return history + [
|
| 132 |
+
(message, response.choices[0].message.content)
|
| 133 |
+
]
|
| 134 |
+
|
| 135 |
+
except Exception as e:
|
| 136 |
+
return history + [
|
| 137 |
+
(message, f"Error: {str(e)}")
|
| 138 |
+
]
|
| 139 |
|
| 140 |
+
def create_demo():
|
| 141 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 142 |
+
gr.Markdown("# 🔬 Data Science Expert")
|
|
|
|
| 143 |
|
| 144 |
+
with gr.Row():
|
| 145 |
+
with gr.Column():
|
| 146 |
+
api_key = gr.Textbox(
|
| 147 |
+
label="GPT-4o-mini API Key",
|
| 148 |
+
placeholder="sk-...",
|
| 149 |
+
type="password"
|
| 150 |
+
)
|
| 151 |
+
file_input = gr.File(
|
| 152 |
+
label="Upload CSV file",
|
| 153 |
+
file_types=[".csv"]
|
| 154 |
+
)
|
| 155 |
+
system_prompt = gr.Textbox(
|
| 156 |
+
label="System Prompt",
|
| 157 |
+
value=DATA_ANALYSIS_PROMPT,
|
| 158 |
+
lines=5
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
with gr.Column():
|
| 162 |
+
chat = gr.Chatbot(label="Analysis Chat")
|
| 163 |
+
msg = gr.Textbox(
|
| 164 |
+
label="Ask about your data",
|
| 165 |
+
placeholder="What insights can you find in this dataset?"
|
| 166 |
+
)
|
| 167 |
+
clear = gr.Button("Clear")
|
| 168 |
|
| 169 |
+
# Store DataFrame in state
|
| 170 |
+
df_state = gr.State(None)
|
|
|
|
|
|
|
| 171 |
|
| 172 |
+
def process_file(file):
|
| 173 |
+
if file is None:
|
| 174 |
+
return None
|
| 175 |
+
return pd.read_csv(file.name)
|
|
|
|
| 176 |
|
| 177 |
+
file_input.change(
|
| 178 |
+
process_file,
|
| 179 |
+
inputs=[file_input],
|
| 180 |
+
outputs=[df_state]
|
| 181 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
+
msg.submit(
|
| 184 |
+
chat_with_data_scientist,
|
| 185 |
+
inputs=[msg, chat, api_key, df_state],
|
| 186 |
+
outputs=[chat]
|
| 187 |
+
)
|
| 188 |
|
| 189 |
+
clear.click(lambda: None, None, chat)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
return demo
|
| 192 |
+
|
| 193 |
+
demo = create_demo()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
if __name__ == "__main__":
|
| 196 |
+
demo.launch()
|
| 197 |
+
else:
|
| 198 |
+
demo.launch(show_api=False)
|