Update app.py
Browse files
app.py
CHANGED
@@ -5,291 +5,246 @@ import pandas as pd
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
import seaborn as sns
|
7 |
import numpy as np
|
|
|
8 |
from sklearn.model_selection import train_test_split
|
9 |
from sklearn.linear_model import LogisticRegression
|
10 |
from sklearn.preprocessing import LabelEncoder
|
11 |
-
import tempfile
|
12 |
-
import shutil
|
13 |
-
|
14 |
-
# Create a temporary directory for plot files
|
15 |
-
TEMP_DIR = tempfile.mkdtemp()
|
16 |
-
|
17 |
-
def cleanup_temp_files():
|
18 |
-
"""Clean up temporary files when the application exits"""
|
19 |
-
try:
|
20 |
-
shutil.rmtree(TEMP_DIR)
|
21 |
-
except Exception as e:
|
22 |
-
print(f"Error cleaning up temporary files: {e}")
|
23 |
-
|
24 |
-
def get_temp_path(filename):
|
25 |
-
"""Generate a path for temporary files"""
|
26 |
-
return os.path.join(TEMP_DIR, filename)
|
27 |
-
|
28 |
-
def call_gpt4o_mini(api_key, context, user_prompt):
|
29 |
-
"""Enhanced GPT-4o-mini call with better error handling"""
|
30 |
-
if not api_key or not api_key.startswith('sk-'):
|
31 |
-
return "Please provide a valid API key (should start with 'sk-')"
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
try:
|
34 |
-
url = os.getenv('GPT4O_MINI_API_URL', 'https://api.openai.com/v1/chat/completions')
|
35 |
-
headers = {
|
36 |
-
"Authorization": f"Bearer {api_key}",
|
37 |
-
"Content-Type": "application/json"
|
38 |
-
}
|
39 |
-
|
40 |
-
messages = [
|
41 |
-
{"role": "system", "content": "You are a data analysis assistant. Analyze the provided data and context."},
|
42 |
-
{"role": "user", "content": f"Context:\n{context}\n\nQuestion: {user_prompt}"}
|
43 |
-
]
|
44 |
-
|
45 |
-
payload = {
|
46 |
-
"model": "gpt-4",
|
47 |
-
"messages": messages,
|
48 |
-
"max_tokens": 500,
|
49 |
-
"temperature": 0.7
|
50 |
-
}
|
51 |
-
|
52 |
response = requests.post(url, json=payload, headers=headers, timeout=10)
|
53 |
-
if response.status_code == 401:
|
54 |
-
return "Invalid API key. Please check your credentials."
|
55 |
response.raise_for_status()
|
56 |
-
|
57 |
-
|
58 |
-
return
|
59 |
except Exception as e:
|
60 |
-
return f"Error: {str(e)}"
|
61 |
|
|
|
|
|
|
|
|
|
62 |
def extended_analysis(df):
|
63 |
-
"""
|
|
|
|
|
|
|
64 |
output_paths = []
|
65 |
numeric_cols = df.select_dtypes(include=["number"]).columns.tolist()
|
66 |
-
|
67 |
-
try:
|
68 |
-
# 1. Correlation Heatmap
|
69 |
-
if len(numeric_cols) > 1:
|
70 |
-
plt.figure(figsize=(12, 8))
|
71 |
-
corr = df[numeric_cols].corr()
|
72 |
-
mask = np.triu(np.ones_like(corr, dtype=bool))
|
73 |
-
sns.heatmap(corr, mask=mask, annot=True, cmap="coolwarm", fmt=".2f",
|
74 |
-
square=True, linewidths=.5)
|
75 |
-
plt.title("Correlation Heatmap of Numeric Features")
|
76 |
-
plt.tight_layout()
|
77 |
-
heatmap_path = get_temp_path("heatmap.png")
|
78 |
-
plt.savefig(heatmap_path, dpi=300, bbox_inches='tight')
|
79 |
-
plt.close()
|
80 |
-
output_paths.append(heatmap_path)
|
81 |
-
|
82 |
-
# 2. Career Distribution
|
83 |
-
if "Career" in df.columns:
|
84 |
-
plt.figure(figsize=(12, 6))
|
85 |
-
career_counts = df["Career"].value_counts()
|
86 |
-
sns.barplot(x=career_counts.index, y=career_counts.values)
|
87 |
-
plt.title("Distribution of Careers")
|
88 |
-
plt.xticks(rotation=45, ha='right')
|
89 |
-
plt.xlabel("Career")
|
90 |
-
plt.ylabel("Count")
|
91 |
-
plt.tight_layout()
|
92 |
-
barplot_path = get_temp_path("career_distribution.png")
|
93 |
-
plt.savefig(barplot_path, dpi=300, bbox_inches='tight')
|
94 |
-
plt.close()
|
95 |
-
output_paths.append(barplot_path)
|
96 |
-
|
97 |
-
# 3. Box Plots for Scores
|
98 |
-
score_columns = [col for col in df.columns if 'score' in col.lower() or 'aptitude' in col.lower()]
|
99 |
-
if score_columns:
|
100 |
-
plt.figure(figsize=(15, 8))
|
101 |
-
df[score_columns].boxplot()
|
102 |
-
plt.title("Distribution of Scores and Aptitudes")
|
103 |
-
plt.xticks(rotation=45, ha='right')
|
104 |
-
plt.ylabel("Score")
|
105 |
-
plt.grid(True, alpha=0.3)
|
106 |
-
plt.tight_layout()
|
107 |
-
boxplot_path = get_temp_path("scores_distribution.png")
|
108 |
-
plt.savefig(boxplot_path, dpi=300, bbox_inches='tight')
|
109 |
-
plt.close()
|
110 |
-
output_paths.append(boxplot_path)
|
111 |
-
|
112 |
-
# 4. Machine Learning Analysis
|
113 |
-
if "Career" in df.columns and len(numeric_cols) > 0:
|
114 |
-
le = LabelEncoder()
|
115 |
-
df["Career_encoded"] = le.fit_transform(df["Career"])
|
116 |
-
X = df[numeric_cols].fillna(df[numeric_cols].mean())
|
117 |
-
y = df["Career_encoded"]
|
118 |
-
|
119 |
-
if len(np.unique(y)) > 1:
|
120 |
-
X_train, X_test, y_train, y_test = train_test_split(
|
121 |
-
X, y, test_size=0.2, random_state=42
|
122 |
-
)
|
123 |
-
model = LogisticRegression(max_iter=1000)
|
124 |
-
model.fit(X_train, y_train)
|
125 |
-
score = model.score(X_test, y_test)
|
126 |
-
|
127 |
-
# Feature importance visualization
|
128 |
-
plt.figure(figsize=(10, 6))
|
129 |
-
importance = pd.DataFrame({
|
130 |
-
'feature': numeric_cols,
|
131 |
-
'importance': np.abs(model.coef_[0])
|
132 |
-
}).sort_values('importance', ascending=True)
|
133 |
-
|
134 |
-
sns.barplot(data=importance, x='importance', y='feature')
|
135 |
-
plt.title("Feature Importance in Career Prediction")
|
136 |
-
plt.tight_layout()
|
137 |
-
importance_path = get_temp_path("feature_importance.png")
|
138 |
-
plt.savefig(importance_path, dpi=300, bbox_inches='tight')
|
139 |
-
plt.close()
|
140 |
-
output_paths.append(importance_path)
|
141 |
-
|
142 |
-
return output_paths, f"Model accuracy: {score:.2f}"
|
143 |
-
else:
|
144 |
-
return output_paths, "Insufficient unique careers for classification"
|
145 |
-
return output_paths, "Analysis completed successfully"
|
146 |
-
|
147 |
-
except Exception as e:
|
148 |
-
return output_paths, f"Error during analysis: {str(e)}"
|
149 |
-
|
150 |
-
class ChatHistory:
|
151 |
-
"""Simple chat history manager without Gradio component inheritance"""
|
152 |
-
def __init__(self):
|
153 |
-
self.messages = []
|
154 |
-
self.data_summary = ""
|
155 |
-
self.current_df = None
|
156 |
-
|
157 |
-
def add_message(self, role, content):
|
158 |
-
self.messages.append({"role": role, "content": content})
|
159 |
-
if len(self.messages) > 10: # Keep last 10 messages
|
160 |
-
self.messages.pop(0)
|
161 |
-
|
162 |
-
def get_context(self):
|
163 |
-
return "\n".join([f"{m['role']}: {m['content']}" for m in self.messages[-5:]])
|
164 |
-
|
165 |
-
def set_data_summary(self, summary):
|
166 |
-
self.data_summary = summary
|
167 |
-
|
168 |
-
def get_full_context(self):
|
169 |
-
return f"Data Summary:\n{self.data_summary}\n\nChat History:\n{self.get_context()}"
|
170 |
-
|
171 |
-
def clear(self):
|
172 |
-
self.messages = []
|
173 |
-
self.data_summary = ""
|
174 |
-
self.current_df = None
|
175 |
-
|
176 |
-
def analyze_and_visualize(file, message, history, api_key, chat_history):
|
177 |
-
"""Main function for data analysis with improved state management"""
|
178 |
-
if not file and chat_history.current_df is None:
|
179 |
-
return history + [(message, "Please upload a CSV file first.")], chat_history
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
else:
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
)
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
chat_history.set_data_summary(summary)
|
203 |
|
204 |
-
#
|
205 |
-
|
206 |
-
|
207 |
-
# Get GPT-4o-mini insights if API key provided
|
208 |
-
if api_key:
|
209 |
-
gpt_response = call_gpt4o_mini(
|
210 |
-
api_key,
|
211 |
-
chat_history.get_full_context(),
|
212 |
-
message
|
213 |
-
)
|
214 |
-
chat_history.add_message("assistant", gpt_response)
|
215 |
-
response_text = f"{summary}\n\n🤖 AI Insights:\n{gpt_response}"
|
216 |
-
else:
|
217 |
-
response_text = f"{summary}\n\nNote: Add an API key for AI-powered insights."
|
218 |
-
|
219 |
-
# Generate visualizations based on user message
|
220 |
-
viz_triggers = ["visualize", "plot", "show", "graph", "analyze", "distribution"]
|
221 |
-
if any(trigger in message.lower() for trigger in viz_triggers):
|
222 |
-
analysis_paths, analysis_info = extended_analysis(df)
|
223 |
-
if analysis_info:
|
224 |
-
response_text += f"\n\n📈 Analysis Results:\n{analysis_info}"
|
225 |
-
|
226 |
-
chat_content = [(message, response_text)]
|
227 |
-
for path in analysis_paths:
|
228 |
-
chat_content.append((None, (path,)))
|
229 |
-
return history + chat_content, chat_history
|
230 |
-
|
231 |
-
return history + [(message, response_text)], chat_history
|
232 |
|
233 |
-
|
234 |
-
error_msg = f"Error processing request: {str(e)}"
|
235 |
-
chat_history.add_message("system", error_msg)
|
236 |
-
return history + [(message, error_msg)], chat_history
|
237 |
|
238 |
-
def
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
fn=analyze_and_visualize,
|
272 |
-
inputs=[file_input, msg, chatbot, api_key, chat_history],
|
273 |
-
outputs=[chatbot, chat_history]
|
274 |
-
).then(lambda: "", None, [msg])
|
275 |
|
|
|
|
|
276 |
send_btn.click(
|
277 |
-
fn=
|
278 |
-
inputs=[
|
279 |
-
outputs=
|
280 |
-
).then(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
|
|
|
|
|
|
|
|
282 |
clear_btn.click(
|
283 |
-
fn=
|
284 |
-
|
|
|
285 |
)
|
286 |
|
287 |
-
|
288 |
-
|
|
|
289 |
|
290 |
if __name__ == "__main__":
|
291 |
-
|
292 |
-
demo = create_demo()
|
293 |
-
demo.launch()
|
294 |
-
finally:
|
295 |
-
cleanup_temp_files()
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
import seaborn as sns
|
7 |
import numpy as np
|
8 |
+
|
9 |
from sklearn.model_selection import train_test_split
|
10 |
from sklearn.linear_model import LogisticRegression
|
11 |
from sklearn.preprocessing import LabelEncoder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
##############################################################################
|
14 |
+
# GPT-4o-mini Placeholder - Adjust for your real endpoint & JSON
|
15 |
+
##############################################################################
|
16 |
+
def call_gpt4o_mini(api_key, user_prompt):
|
17 |
+
"""
|
18 |
+
Hypothetical call to GPT-4o-mini with an sk-... style token.
|
19 |
+
Example endpoint: https://api.gpt4o-mini.com/v1/chat
|
20 |
+
- Adjust JSON structure and keys to your actual service spec.
|
21 |
+
"""
|
22 |
+
if not api_key or not api_key.startswith("sk-"):
|
23 |
+
return "Please provide a valid GPT-4o-mini token (sk-...)."
|
24 |
+
|
25 |
+
url = "https://api.gpt4o-mini.com/v1/chat" # <--- Replace with real endpoint
|
26 |
+
headers = {
|
27 |
+
"Authorization": f"Bearer {api_key}",
|
28 |
+
"Content-Type": "application/json",
|
29 |
+
}
|
30 |
+
payload = {
|
31 |
+
"prompt": user_prompt,
|
32 |
+
"max_tokens": 128, # limit tokens for cost
|
33 |
+
"temperature": 0.7,
|
34 |
+
}
|
35 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
response = requests.post(url, json=payload, headers=headers, timeout=10)
|
|
|
|
|
37 |
response.raise_for_status()
|
38 |
+
data = response.json()
|
39 |
+
# Suppose the text is in data["choices"][0]["text"] (adjust if needed)
|
40 |
+
return data["choices"][0]["text"]
|
41 |
except Exception as e:
|
42 |
+
return f"Error calling GPT-4o-mini: {str(e)}"
|
43 |
|
44 |
+
|
45 |
+
##############################################################################
|
46 |
+
# Local Data Analysis
|
47 |
+
##############################################################################
|
48 |
def extended_analysis(df):
|
49 |
+
"""
|
50 |
+
Does correlation heatmap, bar plot for 'Career', and logistic regression
|
51 |
+
if 'Career' has multiple categories. Returns (list_of_image_paths, info_string).
|
52 |
+
"""
|
53 |
output_paths = []
|
54 |
numeric_cols = df.select_dtypes(include=["number"]).columns.tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# 1) Correlation Heatmap
|
57 |
+
if len(numeric_cols) > 1:
|
58 |
+
corr = df[numeric_cols].corr()
|
59 |
+
plt.figure(figsize=(8, 6))
|
60 |
+
sns.heatmap(corr, annot=True, cmap="coolwarm", fmt=".2f")
|
61 |
+
plt.title("Correlation Heatmap")
|
62 |
+
heatmap_path = "heatmap.png"
|
63 |
+
plt.savefig(heatmap_path)
|
64 |
+
plt.close()
|
65 |
+
output_paths.append(heatmap_path)
|
66 |
+
|
67 |
+
# 2) Bar Plot for 'Career'
|
68 |
+
if "Career" in df.columns:
|
69 |
+
plt.figure(figsize=(8, 5))
|
70 |
+
career_counts = df["Career"].value_counts()
|
71 |
+
sns.barplot(x=career_counts.index, y=career_counts.values)
|
72 |
+
plt.title("Distribution of Careers")
|
73 |
+
plt.xlabel("Career")
|
74 |
+
plt.ylabel("Count")
|
75 |
+
plt.xticks(rotation=45, ha="right")
|
76 |
+
barplot_path = "career_distribution.png"
|
77 |
+
plt.savefig(barplot_path)
|
78 |
+
plt.close()
|
79 |
+
output_paths.append(barplot_path)
|
80 |
+
|
81 |
+
# 3) Simple Logistic Regression
|
82 |
+
if "Career" in df.columns and len(numeric_cols) > 0:
|
83 |
+
le = LabelEncoder()
|
84 |
+
df["Career_encoded"] = le.fit_transform(df["Career"])
|
85 |
+
X = df[numeric_cols].fillna(0)
|
86 |
+
y = df["Career_encoded"]
|
87 |
+
if len(np.unique(y)) > 1:
|
88 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
89 |
+
X, y, test_size=0.2, random_state=42
|
90 |
+
)
|
91 |
+
model = LogisticRegression(max_iter=1000)
|
92 |
+
model.fit(X_train, y_train)
|
93 |
+
score = model.score(X_test, y_test)
|
94 |
+
accuracy_info = f"Logistic Regression accuracy: {score:.2f}"
|
95 |
else:
|
96 |
+
accuracy_info = "Only one category in 'Career'; no classification performed."
|
97 |
+
else:
|
98 |
+
accuracy_info = "No 'Career' column or insufficient numeric columns for classification."
|
99 |
+
|
100 |
+
return output_paths, accuracy_info
|
101 |
+
|
102 |
+
|
103 |
+
##############################################################################
|
104 |
+
# Main Chat/Analysis Function
|
105 |
+
##############################################################################
|
106 |
+
def handle_chat(user_message, df, chat_history, api_key):
|
107 |
+
"""
|
108 |
+
- If df is None, prompt user to upload a CSV.
|
109 |
+
- Else, do local analysis and optionally call GPT-4o-mini for suggestions.
|
110 |
+
- Update the chat_history with role='user' or role='assistant' messages.
|
111 |
+
- Return new chat_history in 'messages' format for the Gradio Chatbot (type='messages').
|
112 |
+
"""
|
113 |
+
if df is None:
|
114 |
+
chat_history.append({"role": "assistant", "content": "Please upload a CSV first."})
|
115 |
+
return chat_history
|
116 |
+
|
117 |
+
# Summarize data
|
118 |
+
numeric_cols = df.select_dtypes(include=["number"]).columns.tolist()
|
119 |
+
cat_cols = df.select_dtypes(exclude=["number"]).columns.tolist()
|
120 |
+
summary = (
|
121 |
+
f"Rows: {df.shape[0]}, Columns: {df.shape[1]}\n"
|
122 |
+
f"Numeric: {', '.join(numeric_cols) if numeric_cols else 'None'}\n"
|
123 |
+
f"Categorical: {', '.join(cat_cols) if cat_cols else 'None'}"
|
124 |
+
)
|
125 |
+
|
126 |
+
# Always show user message in chat
|
127 |
+
chat_history.append({"role": "user", "content": user_message})
|
128 |
+
|
129 |
+
# Possibly call GPT-4o-mini for suggestions
|
130 |
+
gpt_reply = ""
|
131 |
+
if api_key:
|
132 |
+
prompt = f"Data Summary:\n{summary}\nUser Query: {user_message}"
|
133 |
+
gpt_reply = call_gpt4o_mini(api_key, prompt)
|
134 |
+
|
135 |
+
# Build the reply text (local summary + LLM suggestions)
|
136 |
+
reply_text = f"**Data Summary**:\n{summary}"
|
137 |
+
if gpt_reply:
|
138 |
+
reply_text += f"\n\n**GPT-4o-mini**: {gpt_reply}"
|
139 |
+
|
140 |
+
# Check if user wants extended analysis
|
141 |
+
triggers = ["sample analysis", "extended analysis", "advanced analysis", "run analysis", "visualize", "plot"]
|
142 |
+
if any(t in user_message.lower() for t in triggers):
|
143 |
+
# Perform extended analysis
|
144 |
+
image_paths, info = extended_analysis(df)
|
145 |
+
if info:
|
146 |
+
reply_text += f"\n\n**Analysis Info**: {info}"
|
147 |
+
# Add images to chat
|
148 |
+
chat_history.append({"role": "assistant", "content": reply_text})
|
149 |
+
# Return images as separate chat items
|
150 |
+
for path in image_paths:
|
151 |
+
chat_history.append({"role": "assistant", "content": None, "image": path})
|
152 |
+
return chat_history
|
153 |
+
|
154 |
+
# If no extended analysis triggered, just add the text
|
155 |
+
chat_history.append({"role": "assistant", "content": reply_text})
|
156 |
+
return chat_history
|
157 |
+
|
158 |
+
|
159 |
+
##############################################################################
|
160 |
+
# Gradio Interface
|
161 |
+
##############################################################################
|
162 |
+
def create_demo():
|
163 |
+
with gr.Blocks() as demo:
|
164 |
+
# State: holds the DataFrame and the chat messages
|
165 |
+
df_state = gr.State(None)
|
166 |
+
chat_state = gr.State([]) # store messages as list of dicts: [{"role": "...", "content": "..."}]
|
167 |
+
|
168 |
+
gr.Markdown("## GPT-4o-mini Data Analysis Assistant (Chat)")
|
169 |
+
gr.Markdown(
|
170 |
+
"""
|
171 |
+
1. Enter your GPT-4o-mini token (`sk-...`) if you want AI suggestions.
|
172 |
+
2. Upload a CSV file.
|
173 |
+
3. Ask questions or request "sample analysis", "visualize", etc.
|
174 |
+
4. Images are displayed in the chat when relevant.
|
175 |
+
"""
|
176 |
)
|
177 |
|
178 |
+
api_key_box = gr.Textbox(label="GPT-4o-mini Token (sk-...)", placeholder="Optional: sk-xxxx")
|
179 |
+
file_input = gr.File(label="Upload CSV", file_types=[".csv"])
|
|
|
180 |
|
181 |
+
# Chatbot in "messages" format to fix the deprecation warning
|
182 |
+
chatbot = gr.Chatbot(label="Chat Output", type="messages")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
+
user_message = gr.Textbox(label="Your Message", placeholder="Ask about your data...")
|
|
|
|
|
|
|
185 |
|
186 |
+
def upload_csv(file):
|
187 |
+
"""
|
188 |
+
On file upload, load the DataFrame into df_state and reset the chat if needed.
|
189 |
+
"""
|
190 |
+
if file is None:
|
191 |
+
return None
|
192 |
+
df = pd.read_csv(file.name)
|
193 |
+
return df
|
194 |
+
|
195 |
+
file_input.change(fn=upload_csv, inputs=file_input, outputs=df_state)
|
196 |
+
|
197 |
+
def on_user_message(message, df, chat_history, api_key):
|
198 |
+
"""
|
199 |
+
Called when user sends a message. Handle chat + analysis. Return new chat messages.
|
200 |
+
"""
|
201 |
+
if not message.strip():
|
202 |
+
return chat_history # ignore empty
|
203 |
+
updated_history = handle_chat(message, df, chat_history, api_key)
|
204 |
+
return updated_history
|
205 |
+
|
206 |
+
user_message.submit(
|
207 |
+
fn=on_user_message,
|
208 |
+
inputs=[user_message, df_state, chat_state, api_key_box],
|
209 |
+
outputs=chat_state
|
210 |
+
).then(
|
211 |
+
# After updating chat_state, reflect it in the chatbot
|
212 |
+
fn=lambda messages: messages,
|
213 |
+
inputs=chat_state,
|
214 |
+
outputs=chatbot
|
215 |
+
).then(
|
216 |
+
fn=lambda: "",
|
217 |
+
outputs=user_message
|
218 |
+
)
|
|
|
|
|
|
|
|
|
219 |
|
220 |
+
# Button to send message
|
221 |
+
send_btn = gr.Button("Send")
|
222 |
send_btn.click(
|
223 |
+
fn=on_user_message,
|
224 |
+
inputs=[user_message, df_state, chat_state, api_key_box],
|
225 |
+
outputs=chat_state
|
226 |
+
).then(
|
227 |
+
fn=lambda messages: messages,
|
228 |
+
inputs=chat_state,
|
229 |
+
outputs=chatbot
|
230 |
+
).then(
|
231 |
+
fn=lambda: "",
|
232 |
+
outputs=user_message
|
233 |
+
)
|
234 |
|
235 |
+
# Clear chat button
|
236 |
+
clear_btn = gr.Button("Clear Chat")
|
237 |
+
def clear_chat():
|
238 |
+
return [], []
|
239 |
clear_btn.click(
|
240 |
+
fn=clear_chat,
|
241 |
+
inputs=[],
|
242 |
+
outputs=[chat_state, chatbot]
|
243 |
)
|
244 |
|
245 |
+
return demo
|
246 |
+
|
247 |
+
demo = create_demo()
|
248 |
|
249 |
if __name__ == "__main__":
|
250 |
+
demo.launch(share=True)
|
|
|
|
|
|
|
|