File size: 13,508 Bytes
37336a7 bcd9ccf e279441 ad9e004 37336a7 ad9e004 37336a7 e279441 37336a7 e279441 37336a7 5293476 37336a7 5293476 37336a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import os
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import seaborn as sns
import matplotlib.pyplot as plt
from typing import Dict, List, Optional, Tuple, Any
from dataclasses import dataclass
from transformers import Tool, ReactCodeAgent, HfApiEngine
import openai
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.model_selection import train_test_split
import statsmodels.api as sm
import json
import base64
import io
# Configuration class for agent settings
@dataclass
class AgentConfig:
"""Configuration for the data science agent"""
system_prompt: str = """
<DataScienceExpertFramework version="2.0">
<Identity>
<Role>Expert Data Scientist and ML Engineer</Role>
<Expertise>
<Area>Statistical Analysis</Area>
<Area>Machine Learning</Area>
<Area>Data Visualization</Area>
<Area>Feature Engineering</Area>
<Area>Time Series Analysis</Area>
</Expertise>
</Identity>
<Capabilities>
<DataProcessing>
<Task>Data Cleaning</Task>
<Task>Feature Engineering</Task>
<Task>Preprocessing</Task>
</DataProcessing>
<Analysis>
<Task>Statistical Testing</Task>
<Task>Pattern Recognition</Task>
<Task>Correlation Analysis</Task>
</Analysis>
<MachineLearning>
<Task>Model Selection</Task>
<Task>Training</Task>
<Task>Evaluation</Task>
</MachineLearning>
<Visualization>
<Task>EDA Plots</Task>
<Task>Statistical Plots</Task>
<Task>Model Performance Plots</Task>
</Visualization>
</Capabilities>
<OutputFormat>
<Format>Clear Explanations</Format>
<Format>Statistical Evidence</Format>
<Format>Visual Support</Format>
<Format>Actionable Insights</Format>
</OutputFormat>
</DataScienceExpertFramework>
"""
max_iterations: int = 10
temperature: float = 0.7
model_name: str = "gpt-4o-mini"
# Data Analysis State class
@dataclass
class AnalysisState:
"""Maintains state for ongoing analysis"""
df: Optional[pd.DataFrame] = None
current_analysis: Dict = None
visualizations: List[Dict] = None
model_results: Dict = None
error_log: List[str] = None
def clear(self):
self.df = None
self.current_analysis = None
self.visualizations = None
self.model_results = None
self.error_log = []
def log_error(self, error: str):
if self.error_log is None:
self.error_log = []
self.error_log.append(error)
# Helper functions for data processing
def process_uploaded_file(file) -> Tuple[Optional[pd.DataFrame], Dict]:
"""Process uploaded file and return DataFrame with info"""
try:
if file.name.endswith('.csv'):
df = pd.read_csv(file.name)
elif file.name.endswith('.xlsx'):
df = pd.read_excel(file.name)
elif file.name.endswith('.json'):
df = pd.read_json(file.name)
else:
return None, {"error": "Unsupported file format"}
info = {
"shape": df.shape,
"columns": list(df.columns),
"dtypes": df.dtypes.to_dict(),
"missing_values": df.isnull().sum().to_dict(),
"numeric_columns": list(df.select_dtypes(include=[np.number]).columns),
"categorical_columns": list(df.select_dtypes(exclude=[np.number]).columns)
}
return df, info
except Exception as e:
return None, {"error": str(e)}
def create_visualization(data: pd.DataFrame, viz_type: str, params: Dict) -> Optional[Dict]:
"""Create visualization based on type and parameters"""
try:
if viz_type == "scatter":
fig = px.scatter(
data,
x=params["x"],
y=params["y"],
color=params.get("color"),
title=params.get("title", "Scatter Plot")
)
elif viz_type == "histogram":
fig = px.histogram(
data,
x=params["x"],
nbins=params.get("nbins", 30),
title=params.get("title", "Distribution")
)
elif viz_type == "line":
fig = px.line(
data,
x=params["x"],
y=params["y"],
title=params.get("title", "Line Plot")
)
elif viz_type == "heatmap":
numeric_cols = data.select_dtypes(include=[np.number]).columns
corr = data[numeric_cols].corr()
fig = px.imshow(
corr,
labels=dict(color="Correlation"),
title=params.get("title", "Correlation Heatmap")
)
else:
return None
return fig.to_dict()
except Exception as e:
return {"error": str(e)}
class ChatInterface:
"""Manages the chat interface and message handling"""
def __init__(self, agent_config: AgentConfig):
self.config = agent_config
self.history = []
self.agent = self._create_agent()
def _create_agent(self) -> ReactCodeAgent:
"""Initialize the agent with tools"""
tools = self._get_tools()
llm_engine = HfApiEngine()
return ReactCodeAgent(
tools=tools,
llm_engine=llm_engine,
max_iterations=self.config.max_iterations
)
def _get_tools(self) -> List[Tool]:
"""Get list of available tools"""
# Import tools from our tools.py
from tools import (
DataPreprocessingTool,
StatisticalAnalysisTool,
VisualizationTool,
MLModelTool,
TimeSeriesAnalysisTool
)
return [
DataPreprocessingTool(),
StatisticalAnalysisTool(),
VisualizationTool(),
MLModelTool(),
TimeSeriesAnalysisTool()
]
def process_message(self, message: str, analysis_state: AnalysisState) -> Tuple[List, Any]:
"""Process a message and return updated chat history and results"""
try:
if analysis_state.df is None:
return self.history + [(message, "Please upload a data file first.")], None
# Prepare context for the agent
context = {
"data_info": {
"shape": analysis_state.df.shape,
"columns": list(analysis_state.df.columns),
"dtypes": analysis_state.df.dtypes.to_dict()
},
"current_analysis": analysis_state.current_analysis,
"available_tools": [tool.name for tool in self._get_tools()]
}
# Run agent
response = self.agent.run(
f"Context: {json.dumps(context)}\nUser request: {message}"
)
self.history.append((message, response))
return self.history, response
except Exception as e:
error_msg = f"Error processing message: {str(e)}"
analysis_state.log_error(error_msg)
return self.history + [(message, error_msg)], None
def create_demo():
# Initialize configuration and state
config = AgentConfig()
analysis_state = AnalysisState()
chat_interface = ChatInterface(config)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🔬 Advanced Data Science Agent")
with gr.Row():
with gr.Column(scale=1):
api_key = gr.Textbox(
label="API Key (GPT-4o-mini)",
type="password",
placeholder="sk-..."
)
file_input = gr.File(
label="Upload Data",
file_types=[".csv", ".xlsx", ".json"]
)
with gr.Accordion("Analysis Settings", open=False):
analysis_type = gr.Radio(
choices=[
"Exploratory Analysis",
"Statistical Analysis",
"Machine Learning",
"Time Series Analysis"
],
label="Analysis Type",
value="Exploratory Analysis"
)
visualization_type = gr.Dropdown(
choices=[
"Automatic",
"Scatter Plots",
"Distributions",
"Correlations",
"Time Series"
],
label="Visualization Type",
value="Automatic"
)
model_params = gr.JSON(
label="Model Parameters",
value={
"test_size": 0.2,
"n_estimators": 100,
"handle_outliers": True
}
)
with gr.Accordion("System Settings", open=False):
system_prompt = gr.Textbox(
label="System Prompt",
value=config.system_prompt,
lines=10
)
max_iterations = gr.Slider(
minimum=1,
maximum=20,
value=config.max_iterations,
step=1,
label="Max Iterations"
)
with gr.Column(scale=2):
# Chat interface
chatbot = gr.Chatbot(
label="Analysis Chat",
height=400
)
with gr.Row():
text_input = gr.Textbox(
label="Ask about your data",
placeholder="What would you like to analyze?",
lines=2
)
submit_btn = gr.Button("Analyze", variant="primary")
with gr.Row():
clear_btn = gr.Button("Clear Chat")
example_btn = gr.Button("Load Example")
# Output displays
with gr.Accordion("Visualization", open=True):
plot_output = gr.Plot(label="Generated Plots")
with gr.Accordion("Analysis Results", open=True):
results_json = gr.JSON(label="Detailed Results")
with gr.Accordion("Error Log", open=False):
error_output = gr.Textbox(label="Errors", lines=3)
# Event handlers
def handle_file_upload(file):
df, info = process_uploaded_file(file)
if df is not None:
analysis_state.df = df
analysis_state.current_analysis = info
return info, None
return {"error": "Failed to load file"}, "Failed to load file"
def handle_analysis(message, chat_history):
history, response = chat_interface.process_message(message, analysis_state)
return history
def handle_clear():
analysis_state.clear()
chat_interface.history = []
return None, None, None, None, None
def load_example_data():
import sklearn.datasets
data = sklearn.datasets.load_diabetes()
df = pd.DataFrame(data.data, columns=data.feature_names)
df['target'] = data.target
analysis_state.df = df
analysis_state.current_analysis = {
"shape": df.shape,
"columns": list(df.columns),
"dtypes": df.dtypes.to_dict()
}
return analysis_state.current_analysis, None
# Connect event handlers
file_input.change(
handle_file_upload,
inputs=[file_input],
outputs=[results_json, error_output]
)
submit_btn.click(
handle_analysis,
inputs=[text_input, chatbot],
outputs=[chatbot]
)
text_input.submit(
handle_analysis,
inputs=[text_input, chatbot],
outputs=[chatbot]
)
clear_btn.click(
handle_clear,
outputs=[chatbot, plot_output, results_json, error_output, file_input]
)
example_btn.click(
load_example_data,
outputs=[results_json, error_output]
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(share=True)
else:
demo = create_demo()
demo.launch(show_api=False) |