Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import os
|
2 |
-
from typing import
|
3 |
|
4 |
import gradio as gr
|
5 |
import pandas as pd
|
@@ -7,20 +7,9 @@ from smolagents import CodeAgent, LiteLLMModel, tool
|
|
7 |
|
8 |
|
9 |
# Tool definitions to showcase smolagents capabilities
|
10 |
-
@tool
|
11 |
-
def search_web(query: str) -> str:
|
12 |
-
"""Simulate web search (for demo purposes)"""
|
13 |
-
return f"Simulated web search results for: {query}"
|
14 |
-
|
15 |
@tool
|
16 |
def analyze_dataframe(df: pd.DataFrame, analysis_type: str) -> str:
|
17 |
-
"""
|
18 |
-
Analyze a pandas DataFrame based on specified analysis type.
|
19 |
-
|
20 |
-
Args:
|
21 |
-
df: DataFrame to analyze
|
22 |
-
analysis_type: Type of analysis to perform
|
23 |
-
"""
|
24 |
if analysis_type == "summary":
|
25 |
return str(df.describe())
|
26 |
elif analysis_type == "info":
|
@@ -29,13 +18,7 @@ def analyze_dataframe(df: pd.DataFrame, analysis_type: str) -> str:
|
|
29 |
|
30 |
@tool
|
31 |
def plot_data(df: pd.DataFrame, plot_type: str) -> None:
|
32 |
-
"""
|
33 |
-
Create plots from DataFrame.
|
34 |
-
|
35 |
-
Args:
|
36 |
-
df: DataFrame to plot
|
37 |
-
plot_type: Type of plot to create
|
38 |
-
"""
|
39 |
import matplotlib.pyplot as plt
|
40 |
import seaborn as sns
|
41 |
|
@@ -47,45 +30,39 @@ def plot_data(df: pd.DataFrame, plot_type: str) -> None:
|
|
47 |
df.hist(figsize=(15, 10))
|
48 |
plt.tight_layout()
|
49 |
|
50 |
-
def
|
51 |
-
"""Process uploaded
|
52 |
-
if not
|
53 |
return None
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
except Exception as e:
|
66 |
-
print(f"Error reading {file.name}: {str(e)}")
|
67 |
-
|
68 |
-
if not dfs:
|
69 |
return None
|
70 |
-
|
71 |
-
return pd.concat(dfs) if len(dfs) > 1 else dfs[0]
|
72 |
|
73 |
def analyze_data(
|
74 |
-
|
75 |
query: str,
|
76 |
api_key: str,
|
77 |
temperature: float = 0.7,
|
78 |
) -> str:
|
79 |
-
"""Process user request and generate analysis using smolagents
|
80 |
|
81 |
if not api_key:
|
82 |
return "Error: Please provide an API key."
|
83 |
|
84 |
-
if not
|
85 |
-
return "Error: Please upload
|
86 |
|
87 |
try:
|
88 |
-
# Set up
|
89 |
os.environ["OPENAI_API_KEY"] = api_key
|
90 |
|
91 |
# Create model and agent
|
@@ -94,9 +71,9 @@ def analyze_data(
|
|
94 |
temperature=temperature
|
95 |
)
|
96 |
|
97 |
-
# Create agent with various tools
|
98 |
agent = CodeAgent(
|
99 |
-
tools=[
|
100 |
model=model,
|
101 |
additional_authorized_imports=[
|
102 |
"pandas",
|
@@ -111,20 +88,19 @@ def analyze_data(
|
|
111 |
verbosity_level=1
|
112 |
)
|
113 |
|
114 |
-
# Process uploaded
|
115 |
-
df =
|
116 |
if df is None:
|
117 |
-
return "Error: Could not process uploaded
|
118 |
|
119 |
# Build context
|
120 |
-
file_info = "
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
])
|
128 |
|
129 |
# Build prompt
|
130 |
prompt = f"""
|
@@ -132,7 +108,6 @@ def analyze_data(
|
|
132 |
|
133 |
The data has been loaded into a pandas DataFrame called 'df'.
|
134 |
Available tools:
|
135 |
-
- search_web: Search for relevant information
|
136 |
- analyze_dataframe: Perform basic DataFrame analysis
|
137 |
- plot_data: Create various plots
|
138 |
|
@@ -148,8 +123,6 @@ def analyze_data(
|
|
148 |
2. Code for the analysis
|
149 |
3. Visualizations where relevant
|
150 |
4. Key insights and findings
|
151 |
-
|
152 |
-
Make use of the available tools and libraries to provide comprehensive analysis.
|
153 |
"""
|
154 |
|
155 |
# Run analysis
|
@@ -160,7 +133,7 @@ def analyze_data(
|
|
160 |
return f"Error occurred: {str(e)}"
|
161 |
|
162 |
def create_interface():
|
163 |
-
"""Create Gradio interface
|
164 |
|
165 |
with gr.Blocks(title="AI Agent Testing Interface") as interface:
|
166 |
gr.Markdown("""
|
@@ -171,7 +144,6 @@ def create_interface():
|
|
171 |
**Features:**
|
172 |
- Data analysis and visualization
|
173 |
- Machine learning capabilities
|
174 |
-
- Web search simulation
|
175 |
- Statistical analysis
|
176 |
- Custom tool integration
|
177 |
|
@@ -181,7 +153,7 @@ def create_interface():
|
|
181 |
with gr.Row():
|
182 |
with gr.Column():
|
183 |
file = gr.File(
|
184 |
-
label="Upload Data
|
185 |
file_types=[".csv", ".xlsx", ".xls"]
|
186 |
)
|
187 |
query = gr.Textbox(
|
@@ -221,7 +193,6 @@ def create_interface():
|
|
221 |
[None, "Identify and analyze outliers in the dataset"],
|
222 |
[None, "Perform clustering analysis and visualize the results"],
|
223 |
[None, "Calculate summary statistics and create box plots for numeric columns"],
|
224 |
-
[None, "Analyze trends and patterns in the data over time"],
|
225 |
],
|
226 |
inputs=[file, query]
|
227 |
)
|
|
|
1 |
import os
|
2 |
+
from typing import Optional
|
3 |
|
4 |
import gradio as gr
|
5 |
import pandas as pd
|
|
|
7 |
|
8 |
|
9 |
# Tool definitions to showcase smolagents capabilities
|
|
|
|
|
|
|
|
|
|
|
10 |
@tool
|
11 |
def analyze_dataframe(df: pd.DataFrame, analysis_type: str) -> str:
|
12 |
+
"""Analyze a pandas DataFrame"""
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
if analysis_type == "summary":
|
14 |
return str(df.describe())
|
15 |
elif analysis_type == "info":
|
|
|
18 |
|
19 |
@tool
|
20 |
def plot_data(df: pd.DataFrame, plot_type: str) -> None:
|
21 |
+
"""Create plots from DataFrame"""
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
import matplotlib.pyplot as plt
|
23 |
import seaborn as sns
|
24 |
|
|
|
30 |
df.hist(figsize=(15, 10))
|
31 |
plt.tight_layout()
|
32 |
|
33 |
+
def process_file(file: gr.File) -> Optional[pd.DataFrame]:
|
34 |
+
"""Process uploaded file into a DataFrame"""
|
35 |
+
if not file:
|
36 |
return None
|
37 |
|
38 |
+
try:
|
39 |
+
if file.name.endswith('.csv'):
|
40 |
+
df = pd.read_csv(file.name)
|
41 |
+
elif file.name.endswith(('.xlsx', '.xls')):
|
42 |
+
df = pd.read_excel(file.name)
|
43 |
+
else:
|
44 |
+
return None
|
45 |
+
return df
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Error reading {file.name}: {str(e)}")
|
|
|
|
|
|
|
|
|
48 |
return None
|
|
|
|
|
49 |
|
50 |
def analyze_data(
|
51 |
+
file: gr.File,
|
52 |
query: str,
|
53 |
api_key: str,
|
54 |
temperature: float = 0.7,
|
55 |
) -> str:
|
56 |
+
"""Process user request and generate analysis using smolagents"""
|
57 |
|
58 |
if not api_key:
|
59 |
return "Error: Please provide an API key."
|
60 |
|
61 |
+
if not file:
|
62 |
+
return "Error: Please upload a file."
|
63 |
|
64 |
try:
|
65 |
+
# Set up environment
|
66 |
os.environ["OPENAI_API_KEY"] = api_key
|
67 |
|
68 |
# Create model and agent
|
|
|
71 |
temperature=temperature
|
72 |
)
|
73 |
|
74 |
+
# Create agent with various tools
|
75 |
agent = CodeAgent(
|
76 |
+
tools=[analyze_dataframe, plot_data],
|
77 |
model=model,
|
78 |
additional_authorized_imports=[
|
79 |
"pandas",
|
|
|
88 |
verbosity_level=1
|
89 |
)
|
90 |
|
91 |
+
# Process uploaded file
|
92 |
+
df = process_file(file)
|
93 |
if df is None:
|
94 |
+
return "Error: Could not process uploaded file."
|
95 |
|
96 |
# Build context
|
97 |
+
file_info = f"""
|
98 |
+
Uploaded file: {file.name}
|
99 |
+
DataFrame Shape: {df.shape}
|
100 |
+
Columns: {', '.join(df.columns)}
|
101 |
+
Column Types:
|
102 |
+
{chr(10).join([f'- {col}: {dtype}' for col, dtype in df.dtypes.items()])}
|
103 |
+
"""
|
|
|
104 |
|
105 |
# Build prompt
|
106 |
prompt = f"""
|
|
|
108 |
|
109 |
The data has been loaded into a pandas DataFrame called 'df'.
|
110 |
Available tools:
|
|
|
111 |
- analyze_dataframe: Perform basic DataFrame analysis
|
112 |
- plot_data: Create various plots
|
113 |
|
|
|
123 |
2. Code for the analysis
|
124 |
3. Visualizations where relevant
|
125 |
4. Key insights and findings
|
|
|
|
|
126 |
"""
|
127 |
|
128 |
# Run analysis
|
|
|
133 |
return f"Error occurred: {str(e)}"
|
134 |
|
135 |
def create_interface():
|
136 |
+
"""Create Gradio interface"""
|
137 |
|
138 |
with gr.Blocks(title="AI Agent Testing Interface") as interface:
|
139 |
gr.Markdown("""
|
|
|
144 |
**Features:**
|
145 |
- Data analysis and visualization
|
146 |
- Machine learning capabilities
|
|
|
147 |
- Statistical analysis
|
148 |
- Custom tool integration
|
149 |
|
|
|
153 |
with gr.Row():
|
154 |
with gr.Column():
|
155 |
file = gr.File(
|
156 |
+
label="Upload Data File (CSV/Excel)",
|
157 |
file_types=[".csv", ".xlsx", ".xls"]
|
158 |
)
|
159 |
query = gr.Textbox(
|
|
|
193 |
[None, "Identify and analyze outliers in the dataset"],
|
194 |
[None, "Perform clustering analysis and visualize the results"],
|
195 |
[None, "Calculate summary statistics and create box plots for numeric columns"],
|
|
|
196 |
],
|
197 |
inputs=[file, query]
|
198 |
)
|