Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import os
|
| 2 |
-
from typing import
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
import pandas as pd
|
|
@@ -7,20 +7,9 @@ from smolagents import CodeAgent, LiteLLMModel, tool
|
|
| 7 |
|
| 8 |
|
| 9 |
# Tool definitions to showcase smolagents capabilities
|
| 10 |
-
@tool
|
| 11 |
-
def search_web(query: str) -> str:
|
| 12 |
-
"""Simulate web search (for demo purposes)"""
|
| 13 |
-
return f"Simulated web search results for: {query}"
|
| 14 |
-
|
| 15 |
@tool
|
| 16 |
def analyze_dataframe(df: pd.DataFrame, analysis_type: str) -> str:
|
| 17 |
-
"""
|
| 18 |
-
Analyze a pandas DataFrame based on specified analysis type.
|
| 19 |
-
|
| 20 |
-
Args:
|
| 21 |
-
df: DataFrame to analyze
|
| 22 |
-
analysis_type: Type of analysis to perform
|
| 23 |
-
"""
|
| 24 |
if analysis_type == "summary":
|
| 25 |
return str(df.describe())
|
| 26 |
elif analysis_type == "info":
|
|
@@ -29,13 +18,7 @@ def analyze_dataframe(df: pd.DataFrame, analysis_type: str) -> str:
|
|
| 29 |
|
| 30 |
@tool
|
| 31 |
def plot_data(df: pd.DataFrame, plot_type: str) -> None:
|
| 32 |
-
"""
|
| 33 |
-
Create plots from DataFrame.
|
| 34 |
-
|
| 35 |
-
Args:
|
| 36 |
-
df: DataFrame to plot
|
| 37 |
-
plot_type: Type of plot to create
|
| 38 |
-
"""
|
| 39 |
import matplotlib.pyplot as plt
|
| 40 |
import seaborn as sns
|
| 41 |
|
|
@@ -47,45 +30,39 @@ def plot_data(df: pd.DataFrame, plot_type: str) -> None:
|
|
| 47 |
df.hist(figsize=(15, 10))
|
| 48 |
plt.tight_layout()
|
| 49 |
|
| 50 |
-
def
|
| 51 |
-
"""Process uploaded
|
| 52 |
-
if not
|
| 53 |
return None
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
except Exception as e:
|
| 66 |
-
print(f"Error reading {file.name}: {str(e)}")
|
| 67 |
-
|
| 68 |
-
if not dfs:
|
| 69 |
return None
|
| 70 |
-
|
| 71 |
-
return pd.concat(dfs) if len(dfs) > 1 else dfs[0]
|
| 72 |
|
| 73 |
def analyze_data(
|
| 74 |
-
|
| 75 |
query: str,
|
| 76 |
api_key: str,
|
| 77 |
temperature: float = 0.7,
|
| 78 |
) -> str:
|
| 79 |
-
"""Process user request and generate analysis using smolagents
|
| 80 |
|
| 81 |
if not api_key:
|
| 82 |
return "Error: Please provide an API key."
|
| 83 |
|
| 84 |
-
if not
|
| 85 |
-
return "Error: Please upload
|
| 86 |
|
| 87 |
try:
|
| 88 |
-
# Set up
|
| 89 |
os.environ["OPENAI_API_KEY"] = api_key
|
| 90 |
|
| 91 |
# Create model and agent
|
|
@@ -94,9 +71,9 @@ def analyze_data(
|
|
| 94 |
temperature=temperature
|
| 95 |
)
|
| 96 |
|
| 97 |
-
# Create agent with various tools
|
| 98 |
agent = CodeAgent(
|
| 99 |
-
tools=[
|
| 100 |
model=model,
|
| 101 |
additional_authorized_imports=[
|
| 102 |
"pandas",
|
|
@@ -111,20 +88,19 @@ def analyze_data(
|
|
| 111 |
verbosity_level=1
|
| 112 |
)
|
| 113 |
|
| 114 |
-
# Process uploaded
|
| 115 |
-
df =
|
| 116 |
if df is None:
|
| 117 |
-
return "Error: Could not process uploaded
|
| 118 |
|
| 119 |
# Build context
|
| 120 |
-
file_info = "
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
])
|
| 128 |
|
| 129 |
# Build prompt
|
| 130 |
prompt = f"""
|
|
@@ -132,7 +108,6 @@ def analyze_data(
|
|
| 132 |
|
| 133 |
The data has been loaded into a pandas DataFrame called 'df'.
|
| 134 |
Available tools:
|
| 135 |
-
- search_web: Search for relevant information
|
| 136 |
- analyze_dataframe: Perform basic DataFrame analysis
|
| 137 |
- plot_data: Create various plots
|
| 138 |
|
|
@@ -148,8 +123,6 @@ def analyze_data(
|
|
| 148 |
2. Code for the analysis
|
| 149 |
3. Visualizations where relevant
|
| 150 |
4. Key insights and findings
|
| 151 |
-
|
| 152 |
-
Make use of the available tools and libraries to provide comprehensive analysis.
|
| 153 |
"""
|
| 154 |
|
| 155 |
# Run analysis
|
|
@@ -160,7 +133,7 @@ def analyze_data(
|
|
| 160 |
return f"Error occurred: {str(e)}"
|
| 161 |
|
| 162 |
def create_interface():
|
| 163 |
-
"""Create Gradio interface
|
| 164 |
|
| 165 |
with gr.Blocks(title="AI Agent Testing Interface") as interface:
|
| 166 |
gr.Markdown("""
|
|
@@ -171,7 +144,6 @@ def create_interface():
|
|
| 171 |
**Features:**
|
| 172 |
- Data analysis and visualization
|
| 173 |
- Machine learning capabilities
|
| 174 |
-
- Web search simulation
|
| 175 |
- Statistical analysis
|
| 176 |
- Custom tool integration
|
| 177 |
|
|
@@ -181,7 +153,7 @@ def create_interface():
|
|
| 181 |
with gr.Row():
|
| 182 |
with gr.Column():
|
| 183 |
file = gr.File(
|
| 184 |
-
label="Upload Data
|
| 185 |
file_types=[".csv", ".xlsx", ".xls"]
|
| 186 |
)
|
| 187 |
query = gr.Textbox(
|
|
@@ -221,7 +193,6 @@ def create_interface():
|
|
| 221 |
[None, "Identify and analyze outliers in the dataset"],
|
| 222 |
[None, "Perform clustering analysis and visualize the results"],
|
| 223 |
[None, "Calculate summary statistics and create box plots for numeric columns"],
|
| 224 |
-
[None, "Analyze trends and patterns in the data over time"],
|
| 225 |
],
|
| 226 |
inputs=[file, query]
|
| 227 |
)
|
|
|
|
| 1 |
import os
|
| 2 |
+
from typing import Optional
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
import pandas as pd
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
# Tool definitions to showcase smolagents capabilities
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
@tool
|
| 11 |
def analyze_dataframe(df: pd.DataFrame, analysis_type: str) -> str:
|
| 12 |
+
"""Analyze a pandas DataFrame"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
if analysis_type == "summary":
|
| 14 |
return str(df.describe())
|
| 15 |
elif analysis_type == "info":
|
|
|
|
| 18 |
|
| 19 |
@tool
|
| 20 |
def plot_data(df: pd.DataFrame, plot_type: str) -> None:
|
| 21 |
+
"""Create plots from DataFrame"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
import matplotlib.pyplot as plt
|
| 23 |
import seaborn as sns
|
| 24 |
|
|
|
|
| 30 |
df.hist(figsize=(15, 10))
|
| 31 |
plt.tight_layout()
|
| 32 |
|
| 33 |
+
def process_file(file: gr.File) -> Optional[pd.DataFrame]:
|
| 34 |
+
"""Process uploaded file into a DataFrame"""
|
| 35 |
+
if not file:
|
| 36 |
return None
|
| 37 |
|
| 38 |
+
try:
|
| 39 |
+
if file.name.endswith('.csv'):
|
| 40 |
+
df = pd.read_csv(file.name)
|
| 41 |
+
elif file.name.endswith(('.xlsx', '.xls')):
|
| 42 |
+
df = pd.read_excel(file.name)
|
| 43 |
+
else:
|
| 44 |
+
return None
|
| 45 |
+
return df
|
| 46 |
+
except Exception as e:
|
| 47 |
+
print(f"Error reading {file.name}: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
return None
|
|
|
|
|
|
|
| 49 |
|
| 50 |
def analyze_data(
|
| 51 |
+
file: gr.File,
|
| 52 |
query: str,
|
| 53 |
api_key: str,
|
| 54 |
temperature: float = 0.7,
|
| 55 |
) -> str:
|
| 56 |
+
"""Process user request and generate analysis using smolagents"""
|
| 57 |
|
| 58 |
if not api_key:
|
| 59 |
return "Error: Please provide an API key."
|
| 60 |
|
| 61 |
+
if not file:
|
| 62 |
+
return "Error: Please upload a file."
|
| 63 |
|
| 64 |
try:
|
| 65 |
+
# Set up environment
|
| 66 |
os.environ["OPENAI_API_KEY"] = api_key
|
| 67 |
|
| 68 |
# Create model and agent
|
|
|
|
| 71 |
temperature=temperature
|
| 72 |
)
|
| 73 |
|
| 74 |
+
# Create agent with various tools
|
| 75 |
agent = CodeAgent(
|
| 76 |
+
tools=[analyze_dataframe, plot_data],
|
| 77 |
model=model,
|
| 78 |
additional_authorized_imports=[
|
| 79 |
"pandas",
|
|
|
|
| 88 |
verbosity_level=1
|
| 89 |
)
|
| 90 |
|
| 91 |
+
# Process uploaded file
|
| 92 |
+
df = process_file(file)
|
| 93 |
if df is None:
|
| 94 |
+
return "Error: Could not process uploaded file."
|
| 95 |
|
| 96 |
# Build context
|
| 97 |
+
file_info = f"""
|
| 98 |
+
Uploaded file: {file.name}
|
| 99 |
+
DataFrame Shape: {df.shape}
|
| 100 |
+
Columns: {', '.join(df.columns)}
|
| 101 |
+
Column Types:
|
| 102 |
+
{chr(10).join([f'- {col}: {dtype}' for col, dtype in df.dtypes.items()])}
|
| 103 |
+
"""
|
|
|
|
| 104 |
|
| 105 |
# Build prompt
|
| 106 |
prompt = f"""
|
|
|
|
| 108 |
|
| 109 |
The data has been loaded into a pandas DataFrame called 'df'.
|
| 110 |
Available tools:
|
|
|
|
| 111 |
- analyze_dataframe: Perform basic DataFrame analysis
|
| 112 |
- plot_data: Create various plots
|
| 113 |
|
|
|
|
| 123 |
2. Code for the analysis
|
| 124 |
3. Visualizations where relevant
|
| 125 |
4. Key insights and findings
|
|
|
|
|
|
|
| 126 |
"""
|
| 127 |
|
| 128 |
# Run analysis
|
|
|
|
| 133 |
return f"Error occurred: {str(e)}"
|
| 134 |
|
| 135 |
def create_interface():
|
| 136 |
+
"""Create Gradio interface"""
|
| 137 |
|
| 138 |
with gr.Blocks(title="AI Agent Testing Interface") as interface:
|
| 139 |
gr.Markdown("""
|
|
|
|
| 144 |
**Features:**
|
| 145 |
- Data analysis and visualization
|
| 146 |
- Machine learning capabilities
|
|
|
|
| 147 |
- Statistical analysis
|
| 148 |
- Custom tool integration
|
| 149 |
|
|
|
|
| 153 |
with gr.Row():
|
| 154 |
with gr.Column():
|
| 155 |
file = gr.File(
|
| 156 |
+
label="Upload Data File (CSV/Excel)",
|
| 157 |
file_types=[".csv", ".xlsx", ".xls"]
|
| 158 |
)
|
| 159 |
query = gr.Textbox(
|
|
|
|
| 193 |
[None, "Identify and analyze outliers in the dataset"],
|
| 194 |
[None, "Perform clustering analysis and visualize the results"],
|
| 195 |
[None, "Calculate summary statistics and create box plots for numeric columns"],
|
|
|
|
| 196 |
],
|
| 197 |
inputs=[file, query]
|
| 198 |
)
|