jzou19950715's picture
Update app.py
89bc55c verified
import base64
import io
import os
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from litellm import completion
# Code Execution Environment
class CodeEnvironment:
"""Safe environment for executing code with data analysis capabilities"""
def __init__(self):
self.globals = {
'pd': pd,
'np': np,
'plt': plt,
'sns': sns,
}
self.locals = {}
def execute(self, code: str, df: pd.DataFrame = None) -> Dict[str, Any]:
"""Execute code and capture outputs"""
if df is not None:
self.globals['df'] = df
# Capture output
output_buffer = io.StringIO()
result = {'output': '', 'figures': [], 'error': None}
try:
# Execute code
exec(code, self.globals, self.locals)
# Capture figures
for i in plt.get_fignums():
fig = plt.figure(i)
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode()
result['figures'].append(f"data:image/png;base64,{img_str}")
plt.close(fig)
# Get printed output
result['output'] = output_buffer.getvalue()
except Exception as e:
result['error'] = str(e)
finally:
output_buffer.close()
return result
@dataclass
class Tool:
"""Tool for data analysis"""
name: str
description: str
func: Callable
class AnalysisAgent:
"""Agent that can analyze data and execute code"""
def __init__(
self,
model_id: str = "gpt-4o-mini",
temperature: float = 0.7,
):
self.model_id = model_id
self.temperature = temperature
self.tools: List[Tool] = []
self.code_env = CodeEnvironment()
def add_tool(self, name: str, description: str, func: Callable) -> None:
"""Add a tool to the agent"""
self.tools.append(Tool(name=name, description=description, func=func))
def run(self, prompt: str, df: pd.DataFrame = None) -> str:
"""Run analysis with code execution"""
messages = [
{"role": "system", "content": self._get_system_prompt()},
{"role": "user", "content": prompt}
]
try:
# Get response from model
response = completion(
model=self.model_id,
messages=messages,
temperature=self.temperature,
)
analysis = response.choices[0].message.content
# Extract code blocks
code_blocks = self._extract_code(analysis)
# Execute code and capture results
results = []
for code in code_blocks:
result = self.code_env.execute(code, df)
if result['error']:
results.append(f"Error executing code: {result['error']}")
else:
# Add output and figures
if result['output']:
results.append(result['output'])
for fig in result['figures']:
results.append(f"![Figure]({fig})")
# Combine analysis and results
return analysis + "\n\n" + "\n".join(results)
except Exception as e:
return f"Error: {str(e)}"
def _get_system_prompt(self) -> str:
"""Get system prompt with tools and capabilities"""
tools_desc = "\n".join([
f"- {tool.name}: {tool.description}"
for tool in self.tools
])
return f"""You are a data analysis assistant.
Available tools:
{tools_desc}
Capabilities:
- Data analysis (pandas, numpy)
- Visualization (matplotlib, seaborn)
- Statistical analysis (scipy)
- Machine learning (sklearn)
When writing code:
- Use markdown code blocks
- Create clear visualizations
- Include explanations
- Handle errors gracefully
"""
@staticmethod
def _extract_code(text: str) -> List[str]:
"""Extract Python code blocks from markdown"""
import re
pattern = r'```python\n(.*?)```'
return re.findall(pattern, text, re.DOTALL)
def process_file(file: gr.File) -> Optional[pd.DataFrame]:
"""Process uploaded file into DataFrame"""
if not file:
return None
try:
if file.name.endswith('.csv'):
return pd.read_csv(file.name)
elif file.name.endswith(('.xlsx', '.xls')):
return pd.read_excel(file.name)
except Exception as e:
print(f"Error reading file: {str(e)}")
return None
def analyze_data(
file: gr.File,
query: str,
api_key: str,
temperature: float = 0.7,
) -> str:
"""Process user request and generate analysis"""
if not api_key:
return "Error: Please provide an API key."
if not file:
return "Error: Please upload a file."
try:
# Set up environment
os.environ["OPENAI_API_KEY"] = api_key
# Create agent
agent = AnalysisAgent(
model_id="gpt-4o-mini",
temperature=temperature
)
# Process file
df = process_file(file)
if df is None:
return "Error: Could not process file."
# Build context
file_info = f"""
File: {file.name}
Shape: {df.shape}
Columns: {', '.join(df.columns)}
Column Types:
{chr(10).join([f'- {col}: {dtype}' for col, dtype in df.dtypes.items()])}
"""
# Run analysis
prompt = f"""
{file_info}
The data is loaded in a pandas DataFrame called 'df'.
User request: {query}
Please analyze the data and provide:
1. Key insights and findings
2. Whenever the user request is unclear, proactively interpret them such that it becomes analyzable.
"""
return agent.run(prompt, df=df)
except Exception as e:
return f"Error occurred: {str(e)}"
def create_interface():
"""Create Gradio interface"""
with gr.Blocks(title="AI Data Analysis Assistant") as interface:
gr.Markdown("""
# AI Data Analysis Assistant
Upload your data file and get AI-powered analysis with visualizations.
**Features:**
- Data analysis and visualization
- Statistical analysis
- Machine learning capabilities
**Note**: Requires your own OpenAi API key.
""")
with gr.Row():
with gr.Column():
file = gr.File(
label="Upload Data File",
file_types=[".csv", ".xlsx", ".xls"]
)
query = gr.Textbox(
label="What would you like to analyze?",
placeholder="e.g., Create visualizations showing relationships between variables",
lines=3
)
api_key = gr.Textbox(
label="API Key (Required)",
placeholder="Your API key",
type="password"
)
temperature = gr.Slider(
label="Temperature",
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1
)
analyze_btn = gr.Button("Analyze")
with gr.Column():
output = gr.Markdown(label="Output")
analyze_btn.click(
analyze_data,
inputs=[file, query, api_key, temperature],
outputs=output
)
gr.Examples(
examples=[
[None, "Show the distribution of values and key statistics"],
[None, "Create a correlation analysis with heatmap"],
[None, "Identify and visualize any outliers in the data"],
[None, "Generate summary plots for the main variables"],
],
inputs=[file, query]
)
return interface
if __name__ == "__main__":
interface = create_interface()
interface.launch()