Spaces:
Runtime error
Runtime error
| import json | |
| from pathlib import Path | |
| import gradio as gr | |
| import torch | |
| from torch.nn import functional as F | |
| from torch.utils.data import DataLoader | |
| from common import setup_cpu | |
| from models import build_tokenizer, build_model | |
| from models.meta_optimizer import AttnOptimWrapper | |
| from tasks import load_task | |
| from tasks.loader import TokenizedForMCRightPad | |
| DISPLAY_MAPPING = { | |
| "sst2": {"positive": "Pos", "negative": "Neg"}, | |
| "trec": {}, | |
| } | |
| def do_infer_probs(model, exemplar_attn_kv, exemplar_attn_mask, batched_choices_input): | |
| batched_choices_logprobs = [] | |
| for batched_one_choice_input in batched_choices_input: | |
| batch_input_ids, batch_attention_mask, batch_choice_start, batch_choice_end = batched_one_choice_input | |
| bs = len(batch_input_ids) | |
| merged_attn_mask = torch.cat((exemplar_attn_mask.expand(bs, -1), batch_attention_mask), dim=1) | |
| # [B, #Heads, Length, Hidden] | |
| expand_exemplar_attn_kv = [[layer_k.expand((bs, -1, -1, -1)), layer_v.expand((bs, -1, -1, -1))] for layer_k, layer_v in exemplar_attn_kv] | |
| batched_logits = model( | |
| input_ids=batch_input_ids, # [B, L'] | |
| attention_mask=merged_attn_mask, # [B, L + L'] | |
| past_key_values=expand_exemplar_attn_kv, # num_layers * 2 * [B, num_heads, L, H] | |
| ).logits | |
| batched_output = F.log_softmax(batched_logits, dim=-1) # [B, L', Vocab] | |
| batched_one_choice_logprobs = [] | |
| for input_ids, choice_start, choice_end, lm_logprobs in zip(batch_input_ids, batch_choice_start, batch_choice_end, batched_output): | |
| choice_tokens = input_ids[choice_start:choice_end].unsqueeze(1) # [L, 1] | |
| choice_logprobs = lm_logprobs[choice_start - 1 : choice_end - 1] # [L, Vocab] | |
| extracted = torch.gather(choice_logprobs, -1, choice_tokens).squeeze(-1) | |
| choice_length = choice_end - choice_start | |
| lm_log_p = torch.sum(extracted).item() | |
| norm_lm_log_p = (lm_log_p / choice_length).item() | |
| choice_lm_info = {"lm_log_p": lm_log_p, "norm_lm_log_p": norm_lm_log_p} | |
| batched_one_choice_logprobs.append(choice_lm_info) | |
| batched_choices_logprobs.append(batched_one_choice_logprobs) | |
| return batched_choices_logprobs | |
| def process_once(dataset_name, exemplar_str, forward_steps, raw_data): | |
| model_name, model_size = "opt", "125m" | |
| step_size, momentum = 0.01, 0.9 | |
| setup_cpu(seed=seed) | |
| TaskHandler = load_task(dataset_name) | |
| task_agent = TaskHandler(prompt_version) | |
| tokenizer = build_tokenizer(model_name, model_size, padding_side="right") | |
| model = build_model(model_name, model_size, False) | |
| torch.autograd.set_grad_enabled(False) | |
| processed_data = task_agent.dataset_preprocess(raw_data) | |
| dataset = TokenizedForMCRightPad(processed_data, tokenizer, task_agent.multiple_choice_promptify) | |
| exemplar_input_ids, exemplar_attn_mask = dataset.tokenize_demonstration(exemplar_str) | |
| loader = DataLoader(dataset, shuffle=False, drop_last=False, batch_size=1) | |
| meta_optim = AttnOptimWrapper(model, model_name, step_size=step_size, momentum=momentum) | |
| meta_optim.init() | |
| for _ in range(forward_steps): | |
| exemplar_kv = meta_optim.step(exemplar_input_ids) | |
| generated_info = [] # question * [choice0_prob, choice1_prob] | |
| for batch_input in loader: | |
| batch_output = do_infer_probs(model, exemplar_kv, exemplar_attn_mask.unsqueeze(0), batch_input) # [batch_of_choice0, batch_of_choice1, ...] | |
| zipped_logprobs = list(zip(*batch_output)) # batch * (choice0, choice1, ...) | |
| generated_info.extend(zipped_logprobs) | |
| all_predicted = [] | |
| for idx, (data, choice_info) in enumerate(zip(processed_data, generated_info)): | |
| merged_choice_info = task_agent.merge_choice_info(choice_info) | |
| merged_predictions_idx = task_agent.choice_info_to_predictions(merged_choice_info)["lm_log_p"] | |
| predicted = task_agent.CHOICES[merged_predictions_idx] | |
| ground_truth = task_agent.CHOICES[data["answer_idx"]] | |
| res = f"{DISPLAY_MAPPING[dataset_name][predicted]}{'✅' if predicted == ground_truth else '❌'}" | |
| all_predicted.append(res) | |
| return all_predicted | |
| def transpose(l): | |
| return list(map(list, zip(*l))) | |
| def button_pressed(prev_state): | |
| dataset_name = prev_state["dataset_name"] | |
| exemplar_str = prev_state["exemplar_str"] | |
| forward_steps = prev_state["step"] + 2 | |
| raw_data = prev_state["raw_data"] | |
| prev_table_data = prev_state["table_data"] | |
| current_output = process_once(dataset_name, exemplar_str, forward_steps, raw_data) | |
| t_prev = transpose(prev_table_data) | |
| t_prev.append([f"T={forward_steps}"] + current_output) | |
| updated_table_data = transpose(t_prev) | |
| ret = [ | |
| { | |
| "dataset_name": dataset_name, | |
| "exemplar_str": exemplar_str, | |
| "raw_data": raw_data, | |
| "step": forward_steps, | |
| "table_data": updated_table_data, | |
| }, | |
| f"Step + 2, Now: {forward_steps}", | |
| updated_table_data, | |
| ] | |
| return ret | |
| if __name__ == "__main__": | |
| dataset_name = "sst2" | |
| seed = 0 | |
| prompt_version = "default" | |
| kv_iter = 10 | |
| print(f"Dataset: {dataset_name}") | |
| task_root = Path("example_sets").joinpath(dataset_name) | |
| with task_root.joinpath("demos.txt").open("r") as f: | |
| demos = f.read() | |
| with task_root.joinpath("sample.pkl").open("r") as f: | |
| data = json.load(f) | |
| raw_data = [data[str(i)] for i in range(len(data))] | |
| css = """ #the-table > div > div > div > table > thead {display: none}""" | |
| title = "🤔 Iterative Forward Tuning Boosts In-context Learning in Language Models" | |
| demo = gr.Blocks(css=css, title="🤔Deep-Thinking") | |
| with demo: | |
| gr.Markdown(f"<h1 style='text-align: center; margin-bottom: 1rem'>{title}</h1>") | |
| with gr.Tab("SST-2"): | |
| mapping = ["negative", "positive"] | |
| init_columns = [[e["sentence"], f"*{DISPLAY_MAPPING['sst2'][mapping[e['label']]]}*"] for e in raw_data] | |
| state = gr.State( | |
| { | |
| "dataset_name": "sst2", | |
| "exemplar_str": demos, | |
| "raw_data": raw_data, | |
| "step": 0, | |
| "table_data": [["**Test Input**", "**Golden**"], *init_columns], | |
| } | |
| ) | |
| prompt = gr.Textbox(label="Demonstrations (Prompt template formatted)", value=demos) | |
| big_table = gr.DataFrame( | |
| value=[["**Test Input**", "**Golden**"], *init_columns], | |
| elem_id="the-table", | |
| datatype=["markdown"] * 50, | |
| headers=None, | |
| ) | |
| step_button = gr.Button("Step + 2, Now: 0") | |
| step_button.click(button_pressed, inputs=[state], outputs=[state, step_button, big_table]) | |
| demo.launch(server_name="0.0.0.0") | |