|
import os |
|
import time |
|
import spaces |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
import gradio as gr |
|
from threading import Thread |
|
|
|
MODEL = "jwang2373/UW-SBEL-ChronoGemma-27b-it" |
|
|
|
TITLE = "<h1><center>UW-SBEL-ChronoGemma-27b</center></h1>" |
|
|
|
PLACEHOLDER = """ |
|
<center> |
|
<p>Hi! I'm a PyChrono Digital Twin expert. How can I assist you today?</p> |
|
</center> |
|
""" |
|
|
|
CSS = """ |
|
.duplicate-button { |
|
margin: auto !important; |
|
color: white !important; |
|
background: black !important; |
|
border-radius: 100vh !important; |
|
} |
|
h3 { |
|
text-align: center; |
|
} |
|
""" |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") |
|
model = model.eval() |
|
|
|
@spaces.GPU() |
|
def stream_chat( |
|
message: str, |
|
history: list, |
|
system_prompt: str, |
|
temperature: float = 0.5, |
|
max_new_tokens: int = 32768, |
|
top_p: float = 1.0, |
|
top_k: int = 50, |
|
): |
|
print(f'message: {message}') |
|
print(f'history: {history}') |
|
|
|
full_prompt = f"<<SYS>>\n{system_prompt}\n<</SYS>>\n\n" |
|
for prompt, answer in history: |
|
full_prompt += f"[INST]{prompt}[/INST]{answer}" |
|
full_prompt += f"[INST]{message}[/INST]" |
|
|
|
inputs = tokenizer(full_prompt, truncation=False, return_tensors="pt").to(device) |
|
context_length = inputs.input_ids.shape[-1] |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) |
|
|
|
generate_kwargs = dict( |
|
inputs=inputs.input_ids, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
top_p=top_p, |
|
top_k=top_k, |
|
temperature=temperature, |
|
num_beams=1, |
|
streamer=streamer, |
|
) |
|
|
|
thread = Thread(target=model.generate, kwargs=generate_kwargs) |
|
thread.start() |
|
|
|
buffer = "" |
|
for new_text in streamer: |
|
buffer += new_text |
|
yield buffer |
|
|
|
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER) |
|
|
|
with gr.Blocks(css=CSS, theme="soft") as demo: |
|
gr.HTML(TITLE) |
|
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") |
|
gr.ChatInterface( |
|
fn=stream_chat, |
|
chatbot=chatbot, |
|
fill_height=True, |
|
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), |
|
additional_inputs=[ |
|
gr.Textbox( |
|
value="You are a PyChrono expert.", |
|
label="System Prompt", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.5, |
|
label="Temperature", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=1024, |
|
maximum=4096, |
|
step=1024, |
|
value=4096, |
|
label="Max new tokens", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.1, |
|
value=1.0, |
|
label="Top p", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=1, |
|
maximum=100, |
|
step=1, |
|
value=100, |
|
label="Top k", |
|
render=False, |
|
), |
|
], |
|
examples=[ |
|
["Run a PyChrono simulation of a sedan driving on a flat surface with a detailed vehicle dynamics model."], |
|
["Run a real-time simulation of an HMMWV vehicle on a bumpy and textured road."], |
|
["Set up a Curiosity rover driving simulation on flat, rigid ground in PyChrono."], |
|
["Simulate a FEDA vehicle driving on rigid terrain in PyChrono."], |
|
], |
|
cache_examples=False, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |