Spaces:
Running
Running
| import asyncio | |
| import json | |
| import string | |
| from collections import Counter | |
| from itertools import count, tee | |
| import cv2 | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import pandas as pd | |
| import streamlit as st | |
| import torch | |
| from PIL import Image | |
| from transformers import (DetrImageProcessor, | |
| TableTransformerForObjectDetection) | |
| from vietocr.tool.config import Cfg | |
| from vietocr.tool.predictor import Predictor | |
| st.set_option('deprecation.showPyplotGlobalUse', False) | |
| st.set_page_config(layout='wide') | |
| st.title("Table Detection and Table Structure Recognition") | |
| st.write( | |
| "Implemented by MSFT team: https://github.com/microsoft/table-transformer") | |
| config = Cfg.load_config_from_name('vgg_transformer') | |
| config['cnn']['pretrained'] = False | |
| config['device'] = 'cpu' | |
| config['predictor']['beamsearch'] = True | |
| detector = Predictor(config) | |
| table_detection_model = TableTransformerForObjectDetection.from_pretrained( | |
| "microsoft/table-transformer-detection") | |
| table_recognition_model = TableTransformerForObjectDetection.from_pretrained( | |
| "microsoft/table-transformer-structure-recognition") | |
| def PIL_to_cv(pil_img): | |
| return cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR) | |
| def cv_to_PIL(cv_img): | |
| return Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)) | |
| async def pytess(cell_pil_img): | |
| text = detector.predict(cell_pil_img) | |
| return text.strip() | |
| def sharpen_image(pil_img): | |
| img = PIL_to_cv(pil_img) | |
| sharpen_kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]) | |
| sharpen = cv2.filter2D(img, -1, sharpen_kernel) | |
| pil_img = cv_to_PIL(sharpen) | |
| return pil_img | |
| def uniquify(seq, suffs=count(1)): | |
| """Make all the items unique by adding a suffix (1, 2, etc). | |
| Credit: https://stackoverflow.com/questions/30650474/python-rename-duplicates-in-list-with-progressive-numbers-without-sorting-list | |
| `seq` is mutable sequence of strings. | |
| `suffs` is an optional alternative suffix iterable. | |
| """ | |
| not_unique = [k for k, v in Counter(seq).items() if v > 1] | |
| suff_gens = dict(zip(not_unique, tee(suffs, len(not_unique)))) | |
| for idx, s in enumerate(seq): | |
| try: | |
| suffix = str(next(suff_gens[s])) | |
| except KeyError: | |
| continue | |
| else: | |
| seq[idx] += suffix | |
| return seq | |
| def binarizeBlur_image(pil_img): | |
| image = PIL_to_cv(pil_img) | |
| thresh = cv2.threshold(image, 150, 255, cv2.THRESH_BINARY_INV)[1] | |
| result = cv2.GaussianBlur(thresh, (5, 5), 0) | |
| result = 255 - result | |
| return cv_to_PIL(result) | |
| def td_postprocess(pil_img): | |
| ''' | |
| Removes gray background from tables | |
| ''' | |
| img = PIL_to_cv(pil_img) | |
| hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) | |
| mask = cv2.inRange(hsv, (0, 0, 100), | |
| (255, 5, 255)) # (0, 0, 100), (255, 5, 255) | |
| nzmask = cv2.inRange(hsv, (0, 0, 5), | |
| (255, 255, 255)) # (0, 0, 5), (255, 255, 255)) | |
| nzmask = cv2.erode(nzmask, np.ones((3, 3))) # (3,3) | |
| mask = mask & nzmask | |
| new_img = img.copy() | |
| new_img[np.where(mask)] = 255 | |
| return cv_to_PIL(new_img) | |
| # def super_res(pil_img): | |
| # # requires opencv-contrib-python installed without the opencv-python | |
| # sr = dnn_superres.DnnSuperResImpl_create() | |
| # image = PIL_to_cv(pil_img) | |
| # model_path = "./LapSRN_x8.pb" | |
| # model_name = model_path.split('/')[1].split('_')[0].lower() | |
| # model_scale = int(model_path.split('/')[1].split('_')[1].split('.')[0][1]) | |
| # sr.readModel(model_path) | |
| # sr.setModel(model_name, model_scale) | |
| # final_img = sr.upsample(image) | |
| # final_img = cv_to_PIL(final_img) | |
| # return final_img | |
| def table_detector(image, THRESHOLD_PROBA): | |
| ''' | |
| Table detection using DEtect-object TRansformer pre-trained on 1 million tables | |
| ''' | |
| feature_extractor = DetrImageProcessor(do_resize=True, | |
| size=800, | |
| max_size=800) | |
| encoding = feature_extractor(image, return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = table_detection_model(**encoding) | |
| probas = outputs.logits.softmax(-1)[0, :, :-1] | |
| keep = probas.max(-1).values > THRESHOLD_PROBA | |
| target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0) | |
| postprocessed_outputs = feature_extractor.post_process( | |
| outputs, target_sizes) | |
| bboxes_scaled = postprocessed_outputs[0]['boxes'][keep] | |
| return (probas[keep], bboxes_scaled) | |
| def table_struct_recog(image, THRESHOLD_PROBA): | |
| ''' | |
| Table structure recognition using DEtect-object TRansformer pre-trained on 1 million tables | |
| ''' | |
| feature_extractor = DetrImageProcessor(do_resize=True, | |
| size=1000, | |
| max_size=1000) | |
| encoding = feature_extractor(image, return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = table_recognition_model(**encoding) | |
| probas = outputs.logits.softmax(-1)[0, :, :-1] | |
| keep = probas.max(-1).values > THRESHOLD_PROBA | |
| target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0) | |
| postprocessed_outputs = feature_extractor.post_process( | |
| outputs, target_sizes) | |
| bboxes_scaled = postprocessed_outputs[0]['boxes'][keep] | |
| return (probas[keep], bboxes_scaled) | |
| class TableExtractionPipeline(): | |
| colors = ["red", "blue", "green", "yellow", "orange", "violet"] | |
| # colors = ["red", "blue", "green", "red", "red", "red"] | |
| def add_padding(self, | |
| pil_img, | |
| top, | |
| right, | |
| bottom, | |
| left, | |
| color=(255, 255, 255)): | |
| ''' | |
| Image padding as part of TSR pre-processing to prevent missing table edges | |
| ''' | |
| width, height = pil_img.size | |
| new_width = width + right + left | |
| new_height = height + top + bottom | |
| result = Image.new(pil_img.mode, (new_width, new_height), color) | |
| result.paste(pil_img, (left, top)) | |
| return result | |
| def plot_results_detection(self, c1, model, pil_img, prob, boxes, | |
| delta_xmin, delta_ymin, delta_xmax, delta_ymax): | |
| ''' | |
| crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates | |
| ''' | |
| # st.write('img_obj') | |
| # st.write(pil_img) | |
| plt.imshow(pil_img) | |
| ax = plt.gca() | |
| for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()): | |
| cl = p.argmax() | |
| xmin, ymin, xmax, ymax = xmin - delta_xmin, ymin - delta_ymin, xmax + delta_xmax, ymax + delta_ymax | |
| ax.add_patch( | |
| plt.Rectangle((xmin, ymin), | |
| xmax - xmin, | |
| ymax - ymin, | |
| fill=False, | |
| color='red', | |
| linewidth=3)) | |
| text = f'{model.config.id2label[cl.item()]}: {p[cl]:0.2f}' | |
| ax.text(xmin - 20, | |
| ymin - 50, | |
| text, | |
| fontsize=10, | |
| bbox=dict(facecolor='yellow', alpha=0.5)) | |
| plt.axis('off') | |
| c1.pyplot() | |
| def crop_tables(self, pil_img, prob, boxes, delta_xmin, delta_ymin, | |
| delta_xmax, delta_ymax): | |
| ''' | |
| crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates | |
| ''' | |
| cropped_img_list = [] | |
| for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()): | |
| xmin, ymin, xmax, ymax = xmin - delta_xmin, ymin - delta_ymin, xmax + delta_xmax, ymax + delta_ymax | |
| cropped_img = pil_img.crop((xmin, ymin, xmax, ymax)) | |
| cropped_img_list.append(cropped_img) | |
| return cropped_img_list | |
| def generate_structure(self, c2, model, pil_img, prob, boxes, | |
| expand_rowcol_bbox_top, expand_rowcol_bbox_bottom): | |
| ''' | |
| Co-ordinates are adjusted here by 3 'pixels' | |
| To plot table pillow image and the TSR bounding boxes on the table | |
| ''' | |
| # st.write('img_obj') | |
| # st.write(pil_img) | |
| plt.figure(figsize=(32, 20)) | |
| plt.imshow(pil_img) | |
| ax = plt.gca() | |
| rows = {} | |
| cols = {} | |
| idx = 0 | |
| for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()): | |
| xmin, ymin, xmax, ymax = xmin, ymin, xmax, ymax | |
| cl = p.argmax() | |
| class_text = model.config.id2label[cl.item()] | |
| text = f'{class_text}: {p[cl]:0.2f}' | |
| # or (class_text == 'table column') | |
| if (class_text | |
| == 'table row') or (class_text | |
| == 'table projected row header') or ( | |
| class_text == 'table column'): | |
| ax.add_patch( | |
| plt.Rectangle((xmin, ymin), | |
| xmax - xmin, | |
| ymax - ymin, | |
| fill=False, | |
| color=self.colors[cl.item()], | |
| linewidth=2)) | |
| ax.text(xmin - 10, | |
| ymin - 10, | |
| text, | |
| fontsize=5, | |
| bbox=dict(facecolor='yellow', alpha=0.5)) | |
| if class_text == 'table row': | |
| rows['table row.' + | |
| str(idx)] = (xmin, ymin - expand_rowcol_bbox_top, xmax, | |
| ymax + expand_rowcol_bbox_bottom) | |
| if class_text == 'table column': | |
| cols['table column.' + | |
| str(idx)] = (xmin, ymin - expand_rowcol_bbox_top, xmax, | |
| ymax + expand_rowcol_bbox_bottom) | |
| idx += 1 | |
| plt.axis('on') | |
| c2.pyplot() | |
| return rows, cols | |
| def sort_table_featuresv2(self, rows: dict, cols: dict): | |
| # Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox | |
| rows_ = { | |
| table_feature: (xmin, ymin, xmax, ymax) | |
| for table_feature, ( | |
| xmin, ymin, xmax, | |
| ymax) in sorted(rows.items(), key=lambda tup: tup[1][1]) | |
| } | |
| cols_ = { | |
| table_feature: (xmin, ymin, xmax, ymax) | |
| for table_feature, ( | |
| xmin, ymin, xmax, | |
| ymax) in sorted(cols.items(), key=lambda tup: tup[1][0]) | |
| } | |
| return rows_, cols_ | |
| def individual_table_featuresv2(self, pil_img, rows: dict, cols: dict): | |
| for k, v in rows.items(): | |
| xmin, ymin, xmax, ymax = v | |
| cropped_img = pil_img.crop((xmin, ymin, xmax, ymax)) | |
| rows[k] = xmin, ymin, xmax, ymax, cropped_img | |
| for k, v in cols.items(): | |
| xmin, ymin, xmax, ymax = v | |
| cropped_img = pil_img.crop((xmin, ymin, xmax, ymax)) | |
| cols[k] = xmin, ymin, xmax, ymax, cropped_img | |
| return rows, cols | |
| def object_to_cellsv2(self, master_row: dict, cols: dict, | |
| expand_rowcol_bbox_top, expand_rowcol_bbox_bottom, | |
| padd_left): | |
| '''Removes redundant bbox for rows&columns and divides each row into cells from columns | |
| Args: | |
| Returns: | |
| ''' | |
| cells_img = {} | |
| header_idx = 0 | |
| row_idx = 0 | |
| previous_xmax_col = 0 | |
| new_cols = {} | |
| new_master_row = {} | |
| previous_ymin_row = 0 | |
| new_cols = cols | |
| new_master_row = master_row | |
| ## Below 2 for loops remove redundant bounding boxes ### | |
| # for k_col, v_col in cols.items(): | |
| # xmin_col, _, xmax_col, _, col_img = v_col | |
| # if (np.isclose(previous_xmax_col, xmax_col, atol=5)) or (xmin_col >= xmax_col): | |
| # print('Found a column with double bbox') | |
| # continue | |
| # previous_xmax_col = xmax_col | |
| # new_cols[k_col] = v_col | |
| # for k_row, v_row in master_row.items(): | |
| # _, ymin_row, _, ymax_row, row_img = v_row | |
| # if (np.isclose(previous_ymin_row, ymin_row, atol=5)) or (ymin_row >= ymax_row): | |
| # print('Found a row with double bbox') | |
| # continue | |
| # previous_ymin_row = ymin_row | |
| # new_master_row[k_row] = v_row | |
| ###################################################### | |
| for k_row, v_row in new_master_row.items(): | |
| _, _, _, _, row_img = v_row | |
| xmax, ymax = row_img.size | |
| xa, ya, xb, yb = 0, 0, 0, ymax | |
| row_img_list = [] | |
| # plt.imshow(row_img) | |
| # st.pyplot() | |
| for idx, kv in enumerate(new_cols.items()): | |
| k_col, v_col = kv | |
| xmin_col, _, xmax_col, _, col_img = v_col | |
| xmin_col, xmax_col = xmin_col - padd_left - 10, xmax_col - padd_left | |
| xa = xmin_col | |
| xb = xmax_col | |
| if idx == 0: | |
| xa = 0 | |
| if idx == len(new_cols) - 1: | |
| xb = xmax | |
| xa, ya, xb, yb = xa, ya, xb, yb | |
| row_img_cropped = row_img.crop((xa, ya, xb, yb)) | |
| row_img_list.append(row_img_cropped) | |
| cells_img[k_row + '.' + str(row_idx)] = row_img_list | |
| row_idx += 1 | |
| return cells_img, len(new_cols), len(new_master_row) - 1 | |
| def clean_dataframe(self, df): | |
| ''' | |
| Remove irrelevant symbols that appear with tesseractOCR | |
| ''' | |
| # df.columns = [col.replace('|', '') for col in df.columns] | |
| for col in df.columns: | |
| df[col] = df[col].str.replace("'", '', regex=True) | |
| df[col] = df[col].str.replace('"', '', regex=True) | |
| df[col] = df[col].str.replace(']', '', regex=True) | |
| df[col] = df[col].str.replace('[', '', regex=True) | |
| df[col] = df[col].str.replace('{', '', regex=True) | |
| df[col] = df[col].str.replace('}', '', regex=True) | |
| return df | |
| # @st.cache | |
| def convert_df(self, df): | |
| return df.to_csv().encode('utf-8') | |
| def create_dataframe(self, c3, cell_ocr_res: list, max_cols: int, | |
| max_rows: int): | |
| '''Create dataframe using list of cell values of the table, also checks for valid header of dataframe | |
| Args: | |
| cell_ocr_res: list of strings, each element representing a cell in a table | |
| max_cols, max_rows: number of columns and rows | |
| Returns: | |
| dataframe : final dataframe after all pre-processing | |
| ''' | |
| headers = cell_ocr_res[:max_cols] | |
| new_headers = uniquify(headers, | |
| (f' {x!s}' for x in string.ascii_lowercase)) | |
| counter = 0 | |
| cells_list = cell_ocr_res[max_cols:] | |
| df = pd.DataFrame("", index=range(0, max_rows), columns=new_headers) | |
| cell_idx = 0 | |
| for nrows in range(max_rows): | |
| for ncols in range(max_cols): | |
| df.iat[nrows, ncols] = str(cells_list[cell_idx]) | |
| cell_idx += 1 | |
| ## To check if there are duplicate headers if result of uniquify+col == col | |
| ## This check removes headers when all headers are empty or if median of header word count is less than 6 | |
| for x, col in zip(string.ascii_lowercase, new_headers): | |
| if f' {x!s}' == col: | |
| counter += 1 | |
| header_char_count = [len(col) for col in new_headers] | |
| # if (counter == len(new_headers)) or (statistics.median(header_char_count) < 6): | |
| # st.write('woooot') | |
| # df.columns = uniquify(df.iloc[0], (f' {x!s}' for x in string.ascii_lowercase)) | |
| # df = df.iloc[1:,:] | |
| df = self.clean_dataframe(df) | |
| c3.dataframe(df) | |
| csv = self.convert_df(df) | |
| c3.download_button("Download table", | |
| csv, | |
| "file.csv", | |
| "text/csv", | |
| key='download-csv') | |
| return df | |
| async def start_process(self, image_path: str, TD_THRESHOLD, TSR_THRESHOLD, | |
| padd_top, padd_left, padd_bottom, padd_right, | |
| delta_xmin, delta_ymin, delta_xmax, delta_ymax, | |
| expand_rowcol_bbox_top, expand_rowcol_bbox_bottom): | |
| ''' | |
| Initiates process of generating pandas dataframes from raw pdf-page images | |
| ''' | |
| image = Image.open(image_path).convert("RGB") | |
| probas, bboxes_scaled = table_detector(image, | |
| THRESHOLD_PROBA=TD_THRESHOLD) | |
| if bboxes_scaled.nelement() == 0: | |
| st.write('No table found in the pdf-page image') | |
| return '' | |
| # try: | |
| # st.write('Document: '+image_path.split('/')[-1]) | |
| c1, c2, c3 = st.columns((1, 1, 1)) | |
| self.plot_results_detection(c1, table_detection_model, image, probas, | |
| bboxes_scaled, delta_xmin, delta_ymin, | |
| delta_xmax, delta_ymax) | |
| cropped_img_list = self.crop_tables(image, probas, bboxes_scaled, | |
| delta_xmin, delta_ymin, delta_xmax, | |
| delta_ymax) | |
| for unpadded_table in cropped_img_list: | |
| table = self.add_padding(unpadded_table, padd_top, padd_right, | |
| padd_bottom, padd_left) | |
| # table = super_res(table) | |
| # table = binarizeBlur_image(table) | |
| # table = sharpen_image(table) # Test sharpen image next | |
| # table = td_postprocess(table) | |
| probas, bboxes_scaled = table_struct_recog( | |
| table, THRESHOLD_PROBA=TSR_THRESHOLD) | |
| rows, cols = self.generate_structure(c2, table_recognition_model, | |
| table, probas, bboxes_scaled, | |
| expand_rowcol_bbox_top, | |
| expand_rowcol_bbox_bottom) | |
| # st.write(len(rows), len(cols)) | |
| rows, cols = self.sort_table_featuresv2(rows, cols) | |
| master_row, cols = self.individual_table_featuresv2( | |
| table, rows, cols) | |
| cells_img, max_cols, max_rows = self.object_to_cellsv2( | |
| master_row, cols, expand_rowcol_bbox_top, | |
| expand_rowcol_bbox_bottom, padd_left) | |
| sequential_cell_img_list = [] | |
| for k, img_list in cells_img.items(): | |
| for img in img_list: | |
| # img = super_res(img) | |
| # img = sharpen_image(img) # Test sharpen image next | |
| # img = binarizeBlur_image(img) | |
| # img = self.add_padding(img, 10,10,10,10) | |
| # plt.imshow(img) | |
| # c3.pyplot() | |
| sequential_cell_img_list.append(pytess(img)) | |
| cell_ocr_res = await asyncio.gather(*sequential_cell_img_list) | |
| self.create_dataframe(c3, cell_ocr_res, max_cols, max_rows) | |
| st.write( | |
| 'Errors in OCR is due to either quality of the image or performance of the OCR' | |
| ) | |
| # except: | |
| # st.write('Either incorrectly identified table or no table, to debug remove try/except') | |
| # break | |
| # break | |
| if __name__ == "__main__": | |
| img_name = st.file_uploader("Upload an image with table(s)") | |
| st1, st2 = st.columns((1, 1)) | |
| TD_th = st1.slider('Table detection threshold', 0.0, 1.0, 0.8) | |
| TSR_th = st2.slider('Table structure recognition threshold', 0.0, 1.0, 0.8) | |
| st1, st2, st3, st4 = st.columns((1, 1, 1, 1)) | |
| padd_top = st1.slider('Padding top', 0, 200, 40) | |
| padd_left = st2.slider('Padding left', 0, 200, 40) | |
| padd_right = st3.slider('Padding right', 0, 200, 40) | |
| padd_bottom = st4.slider('Padding bottom', 0, 200, 40) | |
| te = TableExtractionPipeline() | |
| # for img in image_list: | |
| if img_name is not None: | |
| asyncio.run( | |
| te.start_process(img_name, | |
| TD_THRESHOLD=TD_th, | |
| TSR_THRESHOLD=TSR_th, | |
| padd_top=padd_top, | |
| padd_left=padd_left, | |
| padd_bottom=padd_bottom, | |
| padd_right=padd_right, | |
| delta_xmin=0, | |
| delta_ymin=0, | |
| delta_xmax=0, | |
| delta_ymax=0, | |
| expand_rowcol_bbox_top=0, | |
| expand_rowcol_bbox_bottom=0)) | |