Spaces:
Running
Running
| from abc import abstractmethod | |
| from typing import Any, Dict, List | |
| import torch | |
| from pytorch_lightning import LightningModule | |
| from torch import Tensor | |
| class LightningRegression(LightningModule): | |
| def __init__(self, *args, **kwargs) -> None: | |
| super(LightningRegression, self).__init__(*args, **kwargs) | |
| self.train_step_output: List[Dict] = [] | |
| self.validation_step_output: List[Dict] = [] | |
| self.log_value_list: List[str] = ['loss', 'mse', 'mape'] | |
| def forward(self, *args, **kwargs) -> Any: | |
| pass | |
| def configure_optimizers(self): | |
| pass | |
| def loss(self, input: Tensor, output: Tensor, **kwargs): | |
| return 0 | |
| def training_step(self, batch, batch_idx): | |
| pass | |
| def __average(self, key: str, outputs: List[Dict]) -> Tensor: | |
| target_arr = torch.Tensor([val[key] for val in outputs]).float() | |
| return target_arr.mean() | |
| def on_train_epoch_end(self) -> None: | |
| for key in self.log_value_list: | |
| val = self.__average(key=key, outputs=self.train_step_output) | |
| log_name = f"training/{key}" | |
| self.log(name=log_name, value=val) | |
| def validation_step(self, batch, batch_idx): | |
| pass | |
| def validation_epoch_end(self, outputs): | |
| for key in self.log_value_list: | |
| val = self.__average(key=key, outputs=self.validation_step_output) | |
| log_name = f"training/{key}" | |
| self.log(name=log_name, value=val) | |