Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +84 -0
- requirements.txt +9 -0
app.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 建立 .streamlit/config.toml 避免 Hugging Face 權限錯誤
|
| 2 |
+
import os
|
| 3 |
+
os.makedirs(".streamlit", exist_ok=True)
|
| 4 |
+
with open(".streamlit/config.toml", "w") as f:
|
| 5 |
+
f.write("""
|
| 6 |
+
[server]
|
| 7 |
+
headless = true
|
| 8 |
+
port = 7860
|
| 9 |
+
enableCORS = true
|
| 10 |
+
""")
|
| 11 |
+
|
| 12 |
+
import streamlit as st
|
| 13 |
+
import joblib
|
| 14 |
+
import pandas as pd
|
| 15 |
+
import shap
|
| 16 |
+
import matplotlib.pyplot as plt
|
| 17 |
+
import platform
|
| 18 |
+
from huggingface_hub import hf_hub_download
|
| 19 |
+
|
| 20 |
+
# 跨平台字型設定
|
| 21 |
+
if platform.system() == 'Windows':
|
| 22 |
+
plt.rcParams['font.family'] = 'Microsoft JhengHei'
|
| 23 |
+
elif platform.system() == 'Darwin': # macOS
|
| 24 |
+
plt.rcParams['font.family'] = 'AppleGothic'
|
| 25 |
+
else:
|
| 26 |
+
plt.rcParams['font.family'] = 'Noto Sans CJK TC' # Linux
|
| 27 |
+
|
| 28 |
+
plt.rcParams['axes.unicode_minus'] = False # 負號使用 ASCII 減號
|
| 29 |
+
|
| 30 |
+
@st.cache_resource(show_spinner=True)
|
| 31 |
+
def load_model_and_explainer():
|
| 32 |
+
# 下載模型與 LabelEncoder
|
| 33 |
+
model_path = hf_hub_download(
|
| 34 |
+
repo_id="jung-ming/Ocean-Meets-Forest",
|
| 35 |
+
filename="rf_model_with_encoder.pkl",
|
| 36 |
+
repo_type="model"
|
| 37 |
+
)
|
| 38 |
+
bundle = joblib.load(model_path)
|
| 39 |
+
model = bundle["model"]
|
| 40 |
+
le = bundle["label_encoder"]
|
| 41 |
+
|
| 42 |
+
# 建立 explainer(避免用 pickle 載入 Numba 編譯物件)
|
| 43 |
+
explainer = shap.TreeExplainer(model, feature_perturbation="interventional")
|
| 44 |
+
|
| 45 |
+
return model, le, explainer
|
| 46 |
+
|
| 47 |
+
model, le, explainer = load_model_and_explainer()
|
| 48 |
+
|
| 49 |
+
# 建立映射
|
| 50 |
+
ship_type_to_code = dict(zip(le.classes_, le.transform(le.classes_)))
|
| 51 |
+
|
| 52 |
+
st.title("🚢 台中港艘次預測系統")
|
| 53 |
+
st.markdown("請輸入以下資訊,模型將預測該月艘次數")
|
| 54 |
+
|
| 55 |
+
port_count = st.selectbox("航線組合數", list(range(1, 100)))
|
| 56 |
+
year = st.selectbox("年", [2020, 2021, 2022, 2023, 2024, 2025])
|
| 57 |
+
month = st.selectbox("月", list(range(1, 13)))
|
| 58 |
+
ship_type = st.selectbox("船舶種類", list(ship_type_to_code.keys()))
|
| 59 |
+
|
| 60 |
+
if st.button("🔮 開始預測"):
|
| 61 |
+
ship_type_encoded = ship_type_to_code[ship_type]
|
| 62 |
+
input_df = pd.DataFrame({
|
| 63 |
+
"航線組合數": [port_count],
|
| 64 |
+
"年": [year],
|
| 65 |
+
"月": [month],
|
| 66 |
+
"船舶種類_編碼": [ship_type_encoded]
|
| 67 |
+
})
|
| 68 |
+
pred = model.predict(input_df)[0]
|
| 69 |
+
st.success(f"預測結果:🚢 約為 {pred:.2f} 艘次")
|
| 70 |
+
|
| 71 |
+
st.subheader("🧠 模型決策解釋圖(SHAP Waterfall)")
|
| 72 |
+
|
| 73 |
+
shap_values = explainer(input_df)
|
| 74 |
+
fig, ax = plt.subplots(figsize=(8, 4))
|
| 75 |
+
shap.plots.waterfall(shap_values[0], show=False)
|
| 76 |
+
|
| 77 |
+
# 修正負號顯示問題
|
| 78 |
+
for text in ax.texts:
|
| 79 |
+
if text.get_text().startswith('\u2212'):
|
| 80 |
+
new_text = text.get_text().replace('\u2212', '-')
|
| 81 |
+
text.set_text(new_text)
|
| 82 |
+
|
| 83 |
+
st.pyplot(fig)
|
| 84 |
+
plt.close(fig)
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
pandas
|
| 3 |
+
joblib
|
| 4 |
+
matplotlib
|
| 5 |
+
shap
|
| 6 |
+
scikit-learn
|
| 7 |
+
huggingface_hub
|
| 8 |
+
requests
|
| 9 |
+
|