File size: 10,768 Bytes
c5aaf7c
 
846b06e
c5aaf7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
846b06e
c5aaf7c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
from __future__ import annotations  # keep list[str] type hints on Py ≀3.9
import os
import streamlit as st
import pandas as pd
import numpy as np
import torch
from typing import Optional
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from matplotlib.colors import LinearSegmentedColormap

# ─────────── MODEL CONSTANTS ───────────
EMBED_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"  # "bowphs/PhilBerta"
# "julian-schelb/xlm-roberta-base-latin-intertextuality"
CLF_MODEL_NAME = "ParitKansal/BERT_Paraphrase_Detection_GLUE_MRPC"
POS_CLASS_IDX = 1  # positive ("intertextual") is *first* label
COLOR_MAP = LinearSegmentedColormap.from_list(
    "light_blues", ["#ffffff", "#2676b8"])
# ─────────── CACHE LOADER ───────────


@st.cache_resource(show_spinner="πŸ”„  Loading HF models …")
def load_models():
    """Load SentenceTransformer & classifier on one device (CPU in Streamlit Cloud, GPU if available)."""
    device = "cuda" if torch.cuda.is_available() else "cpu"
    embedder = SentenceTransformer(EMBED_MODEL_NAME, device=device)
    tokenizer = AutoTokenizer.from_pretrained(
        CLF_MODEL_NAME, use_fast=False, trust_remote_code=True)
    clf_model = AutoModelForSequenceClassification.from_pretrained(
        CLF_MODEL_NAME).to(device)
    clf_model.eval()
    return embedder, tokenizer, clf_model, device

# ─────────── HELPERS ───────────


def cosine_similarity_batch(embedder, originals, paraphrases, batch_size: int = 32):
    sims: list[float] = []
    for i in range(0, len(originals), batch_size):
        o_vec = embedder.encode(
            originals[i: i + batch_size], convert_to_numpy=True, normalize_embeddings=True)
        p_vec = embedder.encode(
            paraphrases[i: i + batch_size], convert_to_numpy=True, normalize_embeddings=True)
        sims.extend((o_vec * p_vec).sum(axis=1))
    return sims


def probability_batch(tokenizer, model, originals, paraphrases, device: str, batch_size: int = 16):
    probs: list[float] = []
    for i in range(0, len(originals), batch_size):
        enc = tokenizer(
            paraphrases[i: i + batch_size],
            originals[i: i + batch_size],
            padding=True,
            truncation=True,
            return_tensors="pt",
        ).to(device)
        with torch.no_grad():
            logits = model(**enc).logits
            probs.extend(torch.softmax(logits, dim=1)[
                         :, POS_CLASS_IDX].cpu().tolist())
    return probs


# =================== ATTENTION WIEGHTS ===================

def get_avg_attention_per_token(
    tokenizer, model, para: str, orig: str, device: str,
    max_tokens: int = 512, filter_special_tokens: bool = True
) -> tuple[list, list]:
    """Return two lists of (token, average_attention_received) pairs for para and orig separately."""
    enc = tokenizer(para.strip(), orig.strip(), return_tensors="pt",
                    truncation=True, max_length=max_tokens).to(device)

    with torch.no_grad():
        attn = model(**enc, output_attentions=True).attentions[-4]
        attn = attn[0].mean(dim=0).cpu().numpy()  # (seq_len, seq_len)

    input_ids = enc["input_ids"][0][:max_tokens]
    tokens = tokenizer.convert_ids_to_tokens(input_ids)
    attn = attn[:len(tokens), :len(tokens)]

    # Compute attention received
    avg_received = attn.mean(axis=0)

    # Find separator token index to split para and orig
    sep_id = tokenizer.sep_token_id
    sep_indices = (input_ids == sep_id).nonzero(as_tuple=True)[0].tolist()

    if len(sep_indices) < 1:
        raise ValueError(
            "Could not find separator token to split para and orig.")

    # para ends at first [SEP], orig starts after
    split_index = sep_indices[0] + 1

    # Split tokens, attention scores, and ids
    para_parts = list(
        zip(tokens[:split_index], avg_received[:split_index], input_ids[:split_index]))
    orig_parts = list(
        zip(tokens[split_index:], avg_received[split_index:], input_ids[split_index:]))

    if filter_special_tokens:
        special_ids = tokenizer.all_special_ids
        para_parts = [(tok, score) for tok, score,
                      tok_id in para_parts if tok_id.item() not in special_ids]
        orig_parts = [(tok, score) for tok, score,
                      tok_id in orig_parts if tok_id.item() not in special_ids]

    return para_parts, orig_parts


def attention_tokens_to_html(token_attention: list, cmap: str = "Blues") -> str:
    """Render tokens as colored boxes with pill-style visual grouping for subwords."""
    import matplotlib.cm as cm
    import matplotlib.colors as mcolors

    tokens, scores = zip(*token_attention)

    # Normalize attention scores
    norm = mcolors.Normalize(vmin=min(scores), vmax=max(scores))
    colormap = COLOR_MAP  # cm.get_cmap(cmap)

    html = ""
    for i, (token, score) in enumerate(token_attention):
        rgba = colormap(norm(score))
        hex_color = mcolors.to_hex(rgba)
        clean_token = token.replace("Δ ", "").replace("▁", "").replace("##", "")

        is_start = (
            i == 0
            or token.startswith("Δ ")
            or token.startswith("▁")
            or token.startswith("<")
            or token.startswith("[")
        )
        is_end = (
            i == len(tokens) - 1
            or tokens[i + 1].startswith("Δ ")
            or tokens[i + 1].startswith("▁")
            or tokens[i + 1].startswith("<")
            or tokens[i + 1].startswith("[")
        )

        # Border radius logic
        if is_start and is_end:
            border_radius = "6px"
        elif is_start:
            border_radius = "6px 0 0 6px"
        elif is_end:
            border_radius = "0 6px 6px 0"
        else:
            border_radius = "0"

        # Padding logic
        if is_start or is_end:
            padding = "2px 6px"
        else:
            padding = "2px 4px"

        # Add space between word groups
        if is_start and i != 0:
            html += " "

        html += f'<span style="background-color:{hex_color}; padding:{padding}; margin:1px 0px; border-radius:{border_radius}; display:inline-block;">{clean_token}</span>'

    return html


# ─────────── UI CONFIG ───────────
st.set_page_config(page_title="Inspector", layout="wide")
# st.title("πŸ“œ Intertextuality Quick-Check")

# ─────────── DATA LOADING ───────────

st.subheader("Model & Data Configuration")

df: Optional[pd.DataFrame] = None

if os.path.exists("test_cases.csv"):
    try:
        df = pd.read_csv("test_cases.csv")
    except Exception as e:
        pass

clf_model_name = st.text_input(
    "Name of the Classification Model:", CLF_MODEL_NAME
)
embed_model_name = st.text_input(
    "Name of the Sentence Transformer Model:", EMBED_MODEL_NAME
)

uploaded = st.file_uploader("File with Sentence Pairs:", type="csv")
if uploaded is not None:
    df = pd.read_csv(uploaded)

if df is None or df.empty:
    st.info("Upload a CSV or place **test_cases.csv** next to the script.")
    st.stop()

missing = {"original", "paraphrased"} - set(df.columns)
if missing:
    st.error("CSV missing required column(s): " + ", ".join(missing))
    st.stop()

# Enable the Process button only when both model names are specified and a CSV file is uploaded.
can_process = bool(
    clf_model_name and embed_model_name and uploaded is not None)
if not st.button("Process", disabled=not can_process):
    st.stop()

if can_process:
    # ─────────── MODEL INFERENCE ───────────
    embedder, tokenizer, clf_model, device = load_models()

    with st.spinner("πŸ”Ž Scoring pairs …"):
        df["cosine_similarity"] = np.round(
            cosine_similarity_batch(
                embedder, df["original"].tolist(), df["paraphrased"].tolist()), 3
        )
        df["P_positive"] = np.round(
            probability_batch(tokenizer, clf_model, df["original"].tolist(
            ), df["paraphrased"].tolist(), device), 3
        )

    # ─────────── LAYOUT ───────────
    st.subheader("Results")
    # st.markdown("Number of sentence pairs: {}".format(len(df)))

    for idx, row in df.iterrows():
        with st.container(border=True, key=f"row_{idx}"):
            # Divide the layout into two columns: left for text details, right for metrics.
            left_col, right_col = st.columns([2, 1])

            with left_col:
                st.markdown(
                    f"**Case ID:** {row.get('case_id', 'N/A')}  \n"
                    f"**Original Text:** {row['original']}  \n"
                    f"**Paraphrased Text:** {row['paraphrased']}  \n"
                    f"**Comment:** {row['operation_description']}"
                )

            with right_col:
                # Display cosine similarity
                sim_value = row["cosine_similarity"]
                sim_pct = max(-1, min(1, sim_value))  # Clamp the value
                st.progress(int(sim_pct * 100),
                            text=f"**Cosine Similarity:** `{sim_value:.3f}`")

                # Display probability
                prob_value = row["P_positive"]
                # Clamp the value to [0, 1]
                prob_pct = max(0, min(1, prob_value))
                st.progress(int(prob_pct * 100),
                            text=f"**Probability:** `{prob_value:.3f}`")

            # Add a popover button for Attention Weights using an expander.
            # with st.expander("Attention Weights"):
            with st.spinner("Computing attention …"):
                st.markdown("**Attention Weights:**")
                weights_para, weight_orig = get_avg_attention_per_token(
                    tokenizer, clf_model, row["paraphrased"], row["original"], device)

                # st.markdown(weights_para)
                st.markdown(weight_orig)

                # Display attention weights for original texts
                html = attention_tokens_to_html(weight_orig)
                st.markdown(html, unsafe_allow_html=True)

                # Display attention weights for paraphrased texts
                html = attention_tokens_to_html(weights_para)
                st.markdown(html, unsafe_allow_html=True)

    # ─────────── DOWNLOAD BUTTON ───────────
    st.download_button(
        "πŸ’Ύ Download Scored CSV",
        data=df.to_csv(index=False).encode(),
        file_name="results_with_scores.csv",
        mime="text/csv",
    )