Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,8 @@
|
|
| 1 |
-
from unsloth import FastLanguageModel
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
| 5 |
from threading import Thread
|
| 6 |
|
| 7 |
-
|
| 8 |
# Load model and tokenizer once at startup
|
| 9 |
model_name = "jsbeaudry/makandal-v2"
|
| 10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
@@ -14,13 +12,9 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 14 |
device_map="auto"
|
| 15 |
)
|
| 16 |
|
| 17 |
-
# Prepare model for inference
|
| 18 |
-
FastLanguageModel.for_inference(model)
|
| 19 |
-
|
| 20 |
think_token_id = tokenizer.convert_tokens_to_ids("</think>")
|
| 21 |
|
| 22 |
def generate_response_stream(prompt):
|
| 23 |
-
"""Generator function that yields streaming responses"""
|
| 24 |
# Format input for chat template
|
| 25 |
messages = [{"role": "user", "content": prompt}]
|
| 26 |
text = tokenizer.apply_chat_template(
|
|
@@ -34,7 +28,7 @@ def generate_response_stream(prompt):
|
|
| 34 |
model_inputs = tokenizer([text], return_tensors="pt")
|
| 35 |
model_inputs = {k: v.to(model.device) for k, v in model_inputs.items()}
|
| 36 |
|
| 37 |
-
#
|
| 38 |
text_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 39 |
|
| 40 |
# Generation parameters
|
|
@@ -53,52 +47,22 @@ def generate_response_stream(prompt):
|
|
| 53 |
thread.start()
|
| 54 |
|
| 55 |
# Stream the response
|
| 56 |
-
|
| 57 |
-
thinking_content = ""
|
| 58 |
-
content = ""
|
| 59 |
-
|
| 60 |
for new_text in text_streamer:
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
# Check if we've hit the think token
|
| 64 |
-
if "</think>" in full_response:
|
| 65 |
-
parts = full_response.split("</think>", 1)
|
| 66 |
-
thinking_content = parts[0].strip()
|
| 67 |
-
content = parts[1].strip() if len(parts) > 1 else ""
|
| 68 |
-
yield thinking_content, content
|
| 69 |
-
else:
|
| 70 |
-
# If no think token yet, everything is thinking content
|
| 71 |
-
thinking_content = full_response.strip()
|
| 72 |
-
yield thinking_content, content
|
| 73 |
-
|
| 74 |
-
# Final yield with complete response
|
| 75 |
-
if "</think>" in full_response:
|
| 76 |
-
parts = full_response.split("</think>", 1)
|
| 77 |
-
thinking_content = parts[0].strip()
|
| 78 |
-
content = parts[1].strip() if len(parts) > 1 else ""
|
| 79 |
-
else:
|
| 80 |
-
# If no think token found, treat everything as content
|
| 81 |
-
thinking_content = ""
|
| 82 |
-
content = full_response.strip()
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
def generate_response_interface(prompt):
|
| 87 |
-
"""Interface function for Gradio that handles streaming"""
|
| 88 |
-
for thinking, content in generate_response_stream(prompt):
|
| 89 |
-
yield thinking, content
|
| 90 |
|
| 91 |
# Gradio Interface with streaming
|
| 92 |
demo = gr.Interface(
|
| 93 |
-
fn=
|
| 94 |
inputs=gr.Textbox(lines=2, placeholder="Ekri yon sijè oswa yon fraz..."),
|
| 95 |
-
outputs=
|
| 96 |
-
gr.Textbox(label="Thinking Content", interactive=False),
|
| 97 |
-
gr.Textbox(label="Respons", interactive=False)
|
| 98 |
-
],
|
| 99 |
title="Makandal Text Generator (Streaming)",
|
| 100 |
description="Ekri yon fraz oswa mo kle pou jenere tèks ak modèl Makandal la. Modèl sa fèt espesyalman pou kontèks Ayiti.",
|
| 101 |
-
live=False # Set to
|
| 102 |
)
|
| 103 |
|
| 104 |
if __name__ == "__main__":
|
|
@@ -107,14 +71,6 @@ if __name__ == "__main__":
|
|
| 107 |
|
| 108 |
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
# import torch
|
| 119 |
# import gradio as gr
|
| 120 |
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
| 4 |
from threading import Thread
|
| 5 |
|
|
|
|
| 6 |
# Load model and tokenizer once at startup
|
| 7 |
model_name = "jsbeaudry/makandal-v2"
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
| 12 |
device_map="auto"
|
| 13 |
)
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
think_token_id = tokenizer.convert_tokens_to_ids("</think>")
|
| 16 |
|
| 17 |
def generate_response_stream(prompt):
|
|
|
|
| 18 |
# Format input for chat template
|
| 19 |
messages = [{"role": "user", "content": prompt}]
|
| 20 |
text = tokenizer.apply_chat_template(
|
|
|
|
| 28 |
model_inputs = tokenizer([text], return_tensors="pt")
|
| 29 |
model_inputs = {k: v.to(model.device) for k, v in model_inputs.items()}
|
| 30 |
|
| 31 |
+
# Create streamer
|
| 32 |
text_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 33 |
|
| 34 |
# Generation parameters
|
|
|
|
| 47 |
thread.start()
|
| 48 |
|
| 49 |
# Stream the response
|
| 50 |
+
partial_response = ""
|
|
|
|
|
|
|
|
|
|
| 51 |
for new_text in text_streamer:
|
| 52 |
+
partial_response += new_text
|
| 53 |
+
yield partial_response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
# Wait for thread to complete
|
| 56 |
+
thread.join()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
# Gradio Interface with streaming
|
| 59 |
demo = gr.Interface(
|
| 60 |
+
fn=generate_response_stream,
|
| 61 |
inputs=gr.Textbox(lines=2, placeholder="Ekri yon sijè oswa yon fraz..."),
|
| 62 |
+
outputs=gr.Textbox(label="Respons"),
|
|
|
|
|
|
|
|
|
|
| 63 |
title="Makandal Text Generator (Streaming)",
|
| 64 |
description="Ekri yon fraz oswa mo kle pou jenere tèks ak modèl Makandal la. Modèl sa fèt espesyalman pou kontèks Ayiti.",
|
| 65 |
+
live=False # Set to False to prevent auto-triggering
|
| 66 |
)
|
| 67 |
|
| 68 |
if __name__ == "__main__":
|
|
|
|
| 71 |
|
| 72 |
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
# import torch
|
| 75 |
# import gradio as gr
|
| 76 |
# from transformers import AutoTokenizer, AutoModelForCausalLM
|