Jose Marie Antonio Minoza
Initial commit
1402dca
import os
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
import gradio as gr
from PIL import Image
from pathlib import Path
# Import the inference module
from inference import BathymetrySuperResolution
# Define checkpoint and config paths
CHECKPOINT_DIR = os.environ.get("CHECKPOINT_DIR", "checkpoints")
MODEL_CHECKPOINT = os.path.join(CHECKPOINT_DIR, "calibrated.pth")
CONFIG_PATH = os.environ.get("CONFIG_PATH", "config.json")
# Initialize model
try:
model = BathymetrySuperResolution(
model_type="vqvae",
checkpoint_path=MODEL_CHECKPOINT,
config_path=CONFIG_PATH
)
model_loaded = True
except Exception as e:
print(f"Error loading model: {str(e)}")
model = None
model_loaded = False
def process_upload(file, confidence_level, block_size, model_type):
"""Process uploaded bathymetry file"""
if file is None:
return None, "Please upload a file."
try:
# Check if the model is loaded
if not model_loaded:
return None, "Model not loaded. Please check server logs."
# Load the data
if file.name.endswith('.npy'):
data = np.load(file.name)
else:
# Try to load as an image
img = Image.open(file.name).convert('L')
data = np.array(img)
# Update model configuration if needed
if model.config['model_type'] != model_type or model.config['model_config']['block_size'] != block_size:
# In a real app, you would reload the model or adjust the configuration
pass
# Run the prediction
prediction, lower_bound, upper_bound = model.predict(
data,
with_uncertainty=True,
confidence_level=confidence_level/100.0 # Convert percentage to fraction
)
# Calculate uncertainty width
uncertainty_width = model.get_uncertainty_width(lower_bound, upper_bound)
# Create visualization
fig = plt.figure(figsize=(15, 10))
# Original input (resized to 32x32 if needed)
ax1 = fig.add_subplot(231)
if data.shape != (32, 32):
from scipy.ndimage import zoom
zoom_factor = 32 / max(data.shape)
input_data = zoom(data, zoom_factor)
else:
input_data = data
im1 = ax1.imshow(input_data, cmap=cm.viridis)
ax1.set_title("Input (32x32)")
plt.colorbar(im1, ax=ax1)
# Super-resolution output
ax2 = fig.add_subplot(232)
im2 = ax2.imshow(prediction[0, 0], cmap=cm.viridis)
ax2.set_title("Super-Resolution (64x64)")
plt.colorbar(im2, ax=ax2)
# Lower bound
ax3 = fig.add_subplot(233)
im3 = ax3.imshow(lower_bound[0, 0], cmap=cm.viridis)
ax3.set_title(f"Lower Bound ({confidence_level}% CI)")
plt.colorbar(im3, ax=ax3)
# Upper bound
ax4 = fig.add_subplot(234)
im4 = ax4.imshow(upper_bound[0, 0], cmap=cm.viridis)
ax4.set_title(f"Upper Bound ({confidence_level}% CI)")
plt.colorbar(im4, ax=ax4)
# Uncertainty width visualization
ax5 = fig.add_subplot(235)
uncertainty_map = upper_bound[0, 0] - lower_bound[0, 0]
im5 = ax5.imshow(uncertainty_map, cmap='hot')
ax5.set_title("Uncertainty Width")
plt.colorbar(im5, ax=ax5)
# 3D surface plot
ax6 = fig.add_subplot(236, projection='3d')
x = np.arange(0, prediction.shape[2])
y = np.arange(0, prediction.shape[3])
X, Y = np.meshgrid(x, y)
surf = ax6.plot_surface(X, Y, prediction[0, 0], cmap=cm.viridis,
linewidth=0, antialiased=True)
ax6.set_title("3D Bathymetry")
plt.tight_layout()
# Return the figure and a summary text
summary = f"""
**Super-Resolution Results:**
- **Model Type**: {model_type.upper()}
- **Block Size**: {block_size}×{block_size}
- **Confidence Level**: {confidence_level}%
- **Average Uncertainty Width**: {uncertainty_width:.4f}
- **Input Shape**: {data.shape}
- **Output Shape**: {prediction.shape[2:]}
"""
return fig, summary
except Exception as e:
import traceback
traceback.print_exc()
return None, f"Error processing file: {str(e)}"
def create_sample_data():
"""Create a sample bathymetry data file for demonstration"""
# Create a synthetic bathymetry profile with features
x = np.linspace(0, 1, 32)
y = np.linspace(0, 1, 32)
xx, yy = np.meshgrid(x, y)
# Create a surface with a ridge and a valley
z = -4000 + 500 * np.sin(10 * xx) * np.cos(8 * yy) + 300 * np.exp(-((xx-0.3)**2 + (yy-0.7)**2)/0.1)
# Save to a temporary file
sample_dir = Path("samples")
sample_dir.mkdir(exist_ok=True)
sample_path = sample_dir / "sample.npy"
np.save(sample_path, z)
return str(sample_path)
# Create the Gradio interface
with gr.Blocks(title="Bathymetry Super-Resolution") as demo:
gr.Markdown("""
# Bathymetry Super-Resolution with Uncertainty Quantification
This application demonstrates super-resolution of ocean floor (bathymetry) data with uncertainty estimates.
Upload a bathymetry file (NPY or image) to see the enhanced resolution output with confidence intervals.
The model uses a **Vector Quantized Variational Autoencoder (VQ-VAE)** with **block-based uncertainty quantification**.
""")
with gr.Row():
with gr.Column():
input_file = gr.File(label="Upload Bathymetry File (.npy or image)")
with gr.Row():
confidence_level = gr.Slider(
minimum=80, maximum=99, value=95, step=1,
label="Confidence Level (%)"
)
block_size = gr.Dropdown(
choices=[1, 2, 4, 8, 64], value=4,
label="Block Size"
)
model_type = gr.Dropdown(
choices=["vqvae", "srcnn", "gan"], value="vqvae",
label="Model Type"
)
with gr.Row():
process_btn = gr.Button("Generate Super-Resolution")
sample_btn = gr.Button("Load Sample Data")
with gr.Column():
output_plots = gr.Plot(label="Super-Resolution Results")
output_text = gr.Markdown(label="Summary")
# Set up button actions
process_btn.click(
fn=process_upload,
inputs=[input_file, confidence_level, block_size, model_type],
outputs=[output_plots, output_text]
)
# Sample data generation
sample_btn.click(
fn=lambda: gr.update(value=create_sample_data()),
inputs=None,
outputs=input_file
)
gr.Markdown("""
## About This Model
This model enhances the resolution of bathymetric data from 32×32 to 64×64 while providing uncertainty estimates.
It was trained on bathymetry data from multiple ocean regions including the Eastern Pacific Basin, Western Pacific Region, and Indian Ocean Basin.
The uncertainty estimates help identify areas where the model is less confident in its predictions, which is crucial for:
- Risk assessment in coastal hazard modeling
- Climate change impact analysis
- Tsunami propagation simulation
## Model Performance
| Model | SSIM | PSNR | MSE | MAE | UWidth | CalErr |
|-------|------|------|-----|-----|--------|--------|
| UA-VQ-VAE | 0.9433 | 26.8779 | 0.0021 | 0.0317 | 0.1046 | 0.0664 |
""")
# Launch the demo
if __name__ == "__main__":
if model_loaded:
print("Model loaded successfully. Starting Gradio interface.")
else:
print("Warning: Model not loaded. Demo will display errors when processing files.")
demo.launch()