from typing import Tuple, Dict import gradio as gr import supervision as sv import numpy as np import cv2 from huggingface_hub import hf_hub_download from ultralytics import YOLO # Define models MODEL_OPTIONS = { "YOLOv11-Small": "medieval-yolo11s-seg.pt" } # Dictionary to store loaded models models: Dict[str, YOLO] = {} # Load all models for name, model_file in MODEL_OPTIONS.items(): model_path = hf_hub_download( repo_id="johnlockejrr/medieval-manuscript-yolov11-seg", filename=model_file ) models[name] = YOLO(model_path) # Create annotators LABEL_ANNOTATOR = sv.LabelAnnotator(text_color=sv.Color.BLACK) MASK_ANNOTATOR = sv.MaskAnnotator() def detect_and_annotate( image: np.ndarray, model_name: str, conf_threshold: float, iou_threshold: float ) -> np.ndarray: # Get the selected model model = models[model_name] # Perform inference results = model.predict( image, conf=conf_threshold, iou=iou_threshold )[0] # Convert results to supervision Detections boxes = results.boxes.xyxy.cpu().numpy() confidence = results.boxes.conf.cpu().numpy() class_ids = results.boxes.cls.cpu().numpy().astype(int) # Handle masks if they exist masks = None if results.masks is not None: masks = results.masks.data.cpu().numpy() # Reshape masks to (num_masks, H, W) masks = np.transpose(masks, (1, 2, 0)) # From (H, W, num_masks) to (num_masks, H, W) # Resize masks to match original image dimensions h, w = image.shape[:2] resized_masks = [] for mask in masks: resized_mask = cv2.resize(mask.astype(float), (w, h), interpolation=cv2.INTER_LINEAR) resized_masks.append(resized_mask) masks = np.array(resized_masks) masks = masks.astype(bool) # Create Detections object detections = sv.Detections( xyxy=boxes, confidence=confidence, class_id=class_ids, mask=masks ) # Create labels with confidence scores labels = [ f"{results.names[class_id]} ({conf:.2f})" for class_id, conf in zip(class_ids, confidence) ] # Annotate image annotated_image = image.copy() if masks is not None: annotated_image = MASK_ANNOTATOR.annotate(scene=annotated_image, detections=detections) annotated_image = LABEL_ANNOTATOR.annotate(scene=annotated_image, detections=detections, labels=labels) return annotated_image # Create Gradio interface with gr.Blocks() as demo: gr.Markdown("# Medieval Manuscript Segmentation with YOLO") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", type='numpy') with gr.Accordion("Detection Settings", open=True): model_selector = gr.Dropdown( choices=list(MODEL_OPTIONS.keys()), value=list(MODEL_OPTIONS.keys())[0], label="Model", info="Select YOLO model variant" ) with gr.Row(): conf_threshold = gr.Slider( label="Confidence Threshold", minimum=0.0, maximum=1.0, step=0.05, value=0.25, ) iou_threshold = gr.Slider( label="IoU Threshold", minimum=0.0, maximum=1.0, step=0.05, value=0.45, info="Decrease for stricter detection, increase for more overlapping boxes" ) with gr.Row(): clear_btn = gr.Button("Clear") detect_btn = gr.Button("Detect", variant="primary") with gr.Column(): output_image = gr.Image(label="Segmentation Result", type='numpy') def process_image(image, model_name, conf_threshold, iou_threshold): if image is None: return None, None annotated_image = detect_and_annotate(image, model_name, conf_threshold, iou_threshold) return image, annotated_image def clear(): return None, None detect_btn.click( process_image, inputs=[input_image, model_selector, conf_threshold, iou_threshold], outputs=[input_image, output_image] ) clear_btn.click(clear, inputs=None, outputs=[input_image, output_image]) if __name__ == "__main__": demo.launch(debug=True, show_error=True)