Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,17 +2,12 @@ from typing import Tuple, Dict
|
|
2 |
import gradio as gr
|
3 |
import supervision as sv
|
4 |
import numpy as np
|
5 |
-
from PIL import Image
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
from ultralytics import YOLO
|
8 |
|
9 |
# Define models
|
10 |
MODEL_OPTIONS = {
|
11 |
-
#"YOLOv11-Nano": "medieval-yolov11n.pt",
|
12 |
"YOLOv11-Small": "medieval-yolo11s-seg.pt"
|
13 |
-
#"YOLOv11-Medium": "medieval-yolov11m.pt",
|
14 |
-
#"YOLOv11-Large": "medieval-yolov11l.pt",
|
15 |
-
#"YOLOv11-XLarge": "medieval-yolov11x.pt"
|
16 |
}
|
17 |
|
18 |
# Dictionary to store loaded models
|
@@ -55,8 +50,17 @@ def detect_and_annotate(
|
|
55 |
masks = None
|
56 |
if results.masks is not None:
|
57 |
masks = results.masks.data.cpu().numpy()
|
58 |
-
#
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
# Create Detections object
|
62 |
detections = sv.Detections(
|
@@ -73,7 +77,7 @@ def detect_and_annotate(
|
|
73 |
in zip(class_ids, confidence)
|
74 |
]
|
75 |
|
76 |
-
# Annotate image
|
77 |
annotated_image = image.copy()
|
78 |
if masks is not None:
|
79 |
annotated_image = MASK_ANNOTATOR.annotate(scene=annotated_image, detections=detections)
|
@@ -83,14 +87,11 @@ def detect_and_annotate(
|
|
83 |
|
84 |
# Create Gradio interface
|
85 |
with gr.Blocks() as demo:
|
86 |
-
gr.Markdown("# Medieval Manuscript
|
87 |
|
88 |
with gr.Row():
|
89 |
with gr.Column():
|
90 |
-
input_image = gr.Image(
|
91 |
-
label="Input Image",
|
92 |
-
type='numpy'
|
93 |
-
)
|
94 |
with gr.Accordion("Detection Settings", open=True):
|
95 |
model_selector = gr.Dropdown(
|
96 |
choices=list(MODEL_OPTIONS.keys()),
|
@@ -119,17 +120,9 @@ with gr.Blocks() as demo:
|
|
119 |
detect_btn = gr.Button("Detect", variant="primary")
|
120 |
|
121 |
with gr.Column():
|
122 |
-
output_image = gr.Image(
|
123 |
-
label="Detection Result",
|
124 |
-
type='numpy'
|
125 |
-
)
|
126 |
|
127 |
-
def process_image(
|
128 |
-
image: np.ndarray,
|
129 |
-
model_name: str,
|
130 |
-
conf_threshold: float,
|
131 |
-
iou_threshold: float
|
132 |
-
) -> Tuple[np.ndarray, np.ndarray]:
|
133 |
if image is None:
|
134 |
return None, None
|
135 |
annotated_image = detect_and_annotate(image, model_name, conf_threshold, iou_threshold)
|
@@ -138,17 +131,12 @@ with gr.Blocks() as demo:
|
|
138 |
def clear():
|
139 |
return None, None
|
140 |
|
141 |
-
# Connect buttons to functions
|
142 |
detect_btn.click(
|
143 |
process_image,
|
144 |
inputs=[input_image, model_selector, conf_threshold, iou_threshold],
|
145 |
outputs=[input_image, output_image]
|
146 |
)
|
147 |
-
clear_btn.click(
|
148 |
-
clear,
|
149 |
-
inputs=None,
|
150 |
-
outputs=[input_image, output_image]
|
151 |
-
)
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
demo.launch(debug=True, show_error=True)
|
|
|
2 |
import gradio as gr
|
3 |
import supervision as sv
|
4 |
import numpy as np
|
|
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
from ultralytics import YOLO
|
7 |
|
8 |
# Define models
|
9 |
MODEL_OPTIONS = {
|
|
|
10 |
"YOLOv11-Small": "medieval-yolo11s-seg.pt"
|
|
|
|
|
|
|
11 |
}
|
12 |
|
13 |
# Dictionary to store loaded models
|
|
|
50 |
masks = None
|
51 |
if results.masks is not None:
|
52 |
masks = results.masks.data.cpu().numpy()
|
53 |
+
# Resize masks to match original image dimensions
|
54 |
+
h, w = image.shape[:2]
|
55 |
+
masks = [
|
56 |
+
cv2.resize(mask.astype(float), (w, h),
|
57 |
+
interpolation=cv2.INTER_LINEAR
|
58 |
+
).astype(bool)
|
59 |
+
for mask in masks
|
60 |
+
]
|
61 |
+
masks = np.array(masks)
|
62 |
+
# Transpose to (H, W, num_masks)
|
63 |
+
masks = np.transpose(masks, (1, 2, 0))
|
64 |
|
65 |
# Create Detections object
|
66 |
detections = sv.Detections(
|
|
|
77 |
in zip(class_ids, confidence)
|
78 |
]
|
79 |
|
80 |
+
# Annotate image
|
81 |
annotated_image = image.copy()
|
82 |
if masks is not None:
|
83 |
annotated_image = MASK_ANNOTATOR.annotate(scene=annotated_image, detections=detections)
|
|
|
87 |
|
88 |
# Create Gradio interface
|
89 |
with gr.Blocks() as demo:
|
90 |
+
gr.Markdown("# Medieval Manuscript Segmentation with YOLO")
|
91 |
|
92 |
with gr.Row():
|
93 |
with gr.Column():
|
94 |
+
input_image = gr.Image(label="Input Image", type='numpy')
|
|
|
|
|
|
|
95 |
with gr.Accordion("Detection Settings", open=True):
|
96 |
model_selector = gr.Dropdown(
|
97 |
choices=list(MODEL_OPTIONS.keys()),
|
|
|
120 |
detect_btn = gr.Button("Detect", variant="primary")
|
121 |
|
122 |
with gr.Column():
|
123 |
+
output_image = gr.Image(label="Segmentation Result", type='numpy')
|
|
|
|
|
|
|
124 |
|
125 |
+
def process_image(image, model_name, conf_threshold, iou_threshold):
|
|
|
|
|
|
|
|
|
|
|
126 |
if image is None:
|
127 |
return None, None
|
128 |
annotated_image = detect_and_annotate(image, model_name, conf_threshold, iou_threshold)
|
|
|
131 |
def clear():
|
132 |
return None, None
|
133 |
|
|
|
134 |
detect_btn.click(
|
135 |
process_image,
|
136 |
inputs=[input_image, model_selector, conf_threshold, iou_threshold],
|
137 |
outputs=[input_image, output_image]
|
138 |
)
|
139 |
+
clear_btn.click(clear, inputs=None, outputs=[input_image, output_image])
|
|
|
|
|
|
|
|
|
140 |
|
141 |
if __name__ == "__main__":
|
142 |
demo.launch(debug=True, show_error=True)
|