wjbmattingly's picture
Create app.py
d138ef9 verified
raw
history blame
3.67 kB
from typing import Tuple
import gradio as gr
import supervision as sv
import numpy as np
from PIL import Image
from huggingface_hub import hf_hub_download
from ultralytics import YOLO
# Load the YOLO model from Hugging Face
model_path = hf_hub_download(
repo_id="cultural-heritage/medieval-manuscript-yolov11",
filename="medieval-yolov11n.pt"
)
# Load the YOLO model from local path
model = YOLO(model_path)
# Create annotators
LABEL_ANNOTATOR = sv.LabelAnnotator(text_color=sv.Color.BLACK)
BOX_ANNOTATOR = sv.BoxAnnotator()
def detect_and_annotate(
image: np.ndarray,
conf_threshold: float,
iou_threshold: float
) -> np.ndarray:
# Perform inference
results = model.predict(
image,
conf=conf_threshold,
iou=iou_threshold
)[0]
# Convert results to supervision Detections
boxes = results.boxes.xyxy.cpu().numpy()
confidence = results.boxes.conf.cpu().numpy()
class_ids = results.boxes.cls.cpu().numpy().astype(int)
# Create Detections object
detections = sv.Detections(
xyxy=boxes,
confidence=confidence,
class_id=class_ids
)
# Create labels with confidence scores
labels = [
f"{results.names[class_id]} ({conf:.2f})"
for class_id, conf
in zip(class_ids, confidence)
]
# Annotate image
annotated_image = image.copy()
annotated_image = BOX_ANNOTATOR.annotate(scene=annotated_image, detections=detections)
annotated_image = LABEL_ANNOTATOR.annotate(scene=annotated_image, detections=detections, labels=labels)
return annotated_image
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Medieval Manuscript Detection with YOLO")
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Input Image",
type='numpy'
)
with gr.Accordion("Detection Settings", open=True):
with gr.Row():
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.25,
)
iou_threshold = gr.Slider(
label="IoU Threshold",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.45,
info="Decrease for stricter detection, increase for more overlapping boxes"
)
with gr.Row():
clear_btn = gr.Button("Clear")
detect_btn = gr.Button("Detect", variant="primary")
with gr.Column():
output_image = gr.Image(
label="Detection Result",
type='numpy'
)
def process_image(
image: np.ndarray,
conf_threshold: float,
iou_threshold: float
) -> Tuple[np.ndarray, np.ndarray]:
if image is None:
return None, None
annotated_image = detect_and_annotate(image, conf_threshold, iou_threshold)
return image, annotated_image
def clear():
return None, None
# Connect buttons to functions
detect_btn.click(
process_image,
inputs=[input_image, conf_threshold, iou_threshold],
outputs=[input_image, output_image]
)
clear_btn.click(
clear,
inputs=None,
outputs=[input_image, output_image]
)
if __name__ == "__main__":
demo.launch(debug=True, show_error=True)