import gradio as gr import numpy as np from tensorflow.keras.preprocessing import image from tensorflow.keras.models import load_model from huggingface_hub import hf_hub_download # Define the path to the model on Hugging Face repo_id = "johansetiawan17/intel-image-classification" filename = "model-intel-image-classification.h5" # Download the model from Hugging Face model_path = hf_hub_download(repo_id=repo_id, filename=filename) # Load the model model = load_model(model_path) # Define variables class_labels = ['buildings', 'forest', 'glacier', 'mountain', 'sea', 'street'] # Define the prediction function def predict_image(img_input): image.save_img('./image.jpeg', img_input) img = image.load_img('./image.jpeg', target_size=(150, 150)) img_array = image.img_to_array(img) img_array = np.expand_dims(img_array, axis=0) img_array /= 255. prediction = model.predict(img_array) predicted_class = np.argmax(prediction) confidence = prediction[0][predicted_class] * 100 result = f"Prediction: {class_labels[predicted_class]} ({confidence:.2f}%)" return result # Create the Gradio interface iface = gr.Interface( fn=predict_image, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=6), title="Natural Scenes Classification", description="Upload an natural scenes or landscape image to classify it into one of the six categories: buildings, forest, glacier, mountain, sea, or street.", ) # Launch the Gradio interface iface.launch(share=True)