improve workflow
Browse files
app.py
CHANGED
@@ -20,141 +20,128 @@ def main():
|
|
20 |
st.info("Please upload PDFs to continue.")
|
21 |
return
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
58 |
|
59 |
# Display extracted keywords and let the user select topics
|
60 |
-
st.write("Extracted Keywords:")
|
61 |
selected_keywords = st.multiselect(
|
62 |
"Select at least two keywords/topics for grouping:",
|
63 |
-
list(keywords_set),
|
64 |
-
default=list(keywords_set)[:2]
|
65 |
)
|
66 |
|
67 |
-
# Add a confirmation button to proceed
|
68 |
if st.button("Confirm Keyword Selection"):
|
69 |
if len(selected_keywords) < 2:
|
70 |
-
st.error("Please select at least two keywords.")
|
71 |
else:
|
72 |
-
st.
|
73 |
-
|
74 |
else:
|
75 |
-
|
76 |
|
77 |
-
|
78 |
-
if not proceed_with_keywords:
|
79 |
st.stop()
|
80 |
|
81 |
-
|
82 |
-
st.info("Precomputing embeddings for all PDFs...")
|
83 |
-
progress = st.progress(0)
|
84 |
-
total_pdfs = len(pdf_texts)
|
85 |
-
processed_pdfs = 0
|
86 |
|
|
|
|
|
|
|
87 |
pdf_embeddings = {}
|
88 |
-
|
|
|
|
|
|
|
89 |
try:
|
90 |
-
# Compute embedding for the PDF
|
91 |
pdf_embeddings[pdf_name] = semantic_model.encode(text, convert_to_tensor=True)
|
92 |
except Exception as e:
|
93 |
st.error(f"Failed to compute embedding for {pdf_name}: {e}")
|
94 |
-
|
|
|
95 |
|
96 |
-
|
97 |
-
processed_pdfs += 1
|
98 |
-
progress.progress(processed_pdfs / total_pdfs)
|
99 |
|
100 |
-
#
|
101 |
-
progress.progress(1.0)
|
102 |
-
|
103 |
-
# Initialize a progress bar for keyword embedding precomputation
|
104 |
st.info("Precomputing embeddings for selected keywords...")
|
105 |
-
|
|
|
|
|
106 |
total_keywords = len(selected_keywords)
|
107 |
-
processed_keywords = 0
|
108 |
|
109 |
-
|
110 |
-
for keyword in selected_keywords:
|
111 |
try:
|
112 |
-
# Compute embedding for the keyword
|
113 |
keyword_embeddings[keyword] = semantic_model.encode(keyword, convert_to_tensor=True)
|
114 |
except Exception as e:
|
115 |
st.error(f"Failed to compute embedding for keyword '{keyword}': {e}")
|
116 |
-
|
117 |
-
|
118 |
-
# Update progress
|
119 |
-
processed_keywords += 1
|
120 |
-
progress.progress(processed_keywords / total_keywords)
|
121 |
|
122 |
-
|
123 |
-
progress.progress(1.0)
|
124 |
|
125 |
# Group PDFs by the most relevant topic
|
|
|
126 |
pdf_groups = {keyword: [] for keyword in selected_keywords}
|
127 |
-
st.info("Assigning PDFs to the most relevant topic...")
|
128 |
|
129 |
for pdf_name, text_embedding in pdf_embeddings.items():
|
130 |
-
max_similarity = -1
|
131 |
best_keyword = None
|
|
|
132 |
|
133 |
-
# Find the most similar keyword for this PDF
|
134 |
for keyword, keyword_embedding in keyword_embeddings.items():
|
135 |
similarity = util.pytorch_cos_sim(text_embedding, keyword_embedding).item()
|
136 |
if similarity > max_similarity:
|
137 |
max_similarity = similarity
|
138 |
best_keyword = keyword
|
139 |
|
140 |
-
# Assign the PDF to the best matching keyword
|
141 |
if best_keyword:
|
142 |
pdf_groups[best_keyword].append(pdf_name)
|
143 |
|
144 |
# Save grouped PDFs into folders
|
145 |
output_folder = "grouped_pdfs"
|
146 |
os.makedirs(output_folder, exist_ok=True)
|
|
|
147 |
for keyword, pdf_names in pdf_groups.items():
|
148 |
keyword_folder = os.path.join(output_folder, keyword)
|
149 |
os.makedirs(keyword_folder, exist_ok=True)
|
150 |
for pdf_name in pdf_names:
|
151 |
-
|
152 |
-
|
153 |
with open(os.path.join(keyword_folder, pdf_name), "wb") as f:
|
154 |
f.write(matched_file.getvalue())
|
155 |
-
except StopIteration:
|
156 |
-
st.error(f"File {pdf_name} not found in uploaded files.")
|
157 |
-
continue
|
158 |
|
159 |
# Zip the folders
|
160 |
zip_buffer = BytesIO()
|
|
|
20 |
st.info("Please upload PDFs to continue.")
|
21 |
return
|
22 |
|
23 |
+
# Check if uploaded files have changed
|
24 |
+
uploaded_file_names = [f.name for f in uploaded_files]
|
25 |
+
if "uploaded_files" not in st.session_state or st.session_state.uploaded_files != uploaded_file_names:
|
26 |
+
st.session_state.uploaded_files = uploaded_file_names
|
27 |
+
st.session_state.keywords_set = None
|
28 |
+
|
29 |
+
# Extract text and keywords from PDFs if not already done
|
30 |
+
if st.session_state.keywords_set is None:
|
31 |
+
st.info("Extracting keywords from PDFs...")
|
32 |
+
pdf_texts = {}
|
33 |
+
keywords_set = set()
|
34 |
+
|
35 |
+
progress1 = st.progress(0)
|
36 |
+
total_files = len(uploaded_files)
|
37 |
+
|
38 |
+
for i, uploaded_file in enumerate(uploaded_files):
|
39 |
+
pdf_name = uploaded_file.name
|
40 |
+
try:
|
41 |
+
reader = PdfReader(uploaded_file)
|
42 |
+
text = "".join(page.extract_text() for page in reader.pages)
|
43 |
+
pdf_texts[pdf_name] = text.lower()
|
44 |
+
|
45 |
+
extracted_keywords = kw_model.extract_keywords(text, top_n=5)
|
46 |
+
for kw, _ in extracted_keywords:
|
47 |
+
keywords_set.add(kw.lower())
|
48 |
+
except Exception as e:
|
49 |
+
st.error(f"Failed to process {pdf_name}: {e}")
|
50 |
+
finally:
|
51 |
+
progress1.progress((i + 1) / total_files)
|
52 |
+
|
53 |
+
if not pdf_texts:
|
54 |
+
st.error("No PDFs could be processed.")
|
55 |
+
return
|
56 |
+
|
57 |
+
progress1.progress(1.0)
|
58 |
+
st.session_state.pdf_texts = pdf_texts
|
59 |
+
st.session_state.keywords_set = keywords_set
|
60 |
|
61 |
# Display extracted keywords and let the user select topics
|
|
|
62 |
selected_keywords = st.multiselect(
|
63 |
"Select at least two keywords/topics for grouping:",
|
64 |
+
list(st.session_state.keywords_set),
|
65 |
+
default=list(st.session_state.keywords_set)[:2]
|
66 |
)
|
67 |
|
|
|
68 |
if st.button("Confirm Keyword Selection"):
|
69 |
if len(selected_keywords) < 2:
|
70 |
+
st.error("Please select at least two keywords to continue.")
|
71 |
else:
|
72 |
+
st.session_state.selected_keywords = selected_keywords
|
73 |
+
st.session_state.keywords_confirmed = True
|
74 |
else:
|
75 |
+
st.session_state.keywords_confirmed = False
|
76 |
|
77 |
+
if not st.session_state.get("keywords_confirmed", False):
|
|
|
78 |
st.stop()
|
79 |
|
80 |
+
st.success("Keyword selection confirmed. Processing PDFs...")
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
# Precompute embeddings for PDFs
|
83 |
+
st.info("Precomputing embeddings for PDFs...")
|
84 |
+
progress2 = st.progress(0)
|
85 |
pdf_embeddings = {}
|
86 |
+
pdf_texts = st.session_state.pdf_texts
|
87 |
+
total_pdfs = len(pdf_texts)
|
88 |
+
|
89 |
+
for i, (pdf_name, text) in enumerate(pdf_texts.items()):
|
90 |
try:
|
|
|
91 |
pdf_embeddings[pdf_name] = semantic_model.encode(text, convert_to_tensor=True)
|
92 |
except Exception as e:
|
93 |
st.error(f"Failed to compute embedding for {pdf_name}: {e}")
|
94 |
+
finally:
|
95 |
+
progress2.progress((i + 1) / total_pdfs)
|
96 |
|
97 |
+
progress2.progress(1.0)
|
|
|
|
|
98 |
|
99 |
+
# Precompute embeddings for selected keywords
|
|
|
|
|
|
|
100 |
st.info("Precomputing embeddings for selected keywords...")
|
101 |
+
progress3 = st.progress(0)
|
102 |
+
selected_keywords = st.session_state.selected_keywords
|
103 |
+
keyword_embeddings = {}
|
104 |
total_keywords = len(selected_keywords)
|
|
|
105 |
|
106 |
+
for i, keyword in enumerate(selected_keywords):
|
|
|
107 |
try:
|
|
|
108 |
keyword_embeddings[keyword] = semantic_model.encode(keyword, convert_to_tensor=True)
|
109 |
except Exception as e:
|
110 |
st.error(f"Failed to compute embedding for keyword '{keyword}': {e}")
|
111 |
+
finally:
|
112 |
+
progress3.progress((i + 1) / total_keywords)
|
|
|
|
|
|
|
113 |
|
114 |
+
progress3.progress(1.0)
|
|
|
115 |
|
116 |
# Group PDFs by the most relevant topic
|
117 |
+
st.info("Assigning PDFs to the most relevant topics...")
|
118 |
pdf_groups = {keyword: [] for keyword in selected_keywords}
|
|
|
119 |
|
120 |
for pdf_name, text_embedding in pdf_embeddings.items():
|
|
|
121 |
best_keyword = None
|
122 |
+
max_similarity = -1
|
123 |
|
|
|
124 |
for keyword, keyword_embedding in keyword_embeddings.items():
|
125 |
similarity = util.pytorch_cos_sim(text_embedding, keyword_embedding).item()
|
126 |
if similarity > max_similarity:
|
127 |
max_similarity = similarity
|
128 |
best_keyword = keyword
|
129 |
|
|
|
130 |
if best_keyword:
|
131 |
pdf_groups[best_keyword].append(pdf_name)
|
132 |
|
133 |
# Save grouped PDFs into folders
|
134 |
output_folder = "grouped_pdfs"
|
135 |
os.makedirs(output_folder, exist_ok=True)
|
136 |
+
|
137 |
for keyword, pdf_names in pdf_groups.items():
|
138 |
keyword_folder = os.path.join(output_folder, keyword)
|
139 |
os.makedirs(keyword_folder, exist_ok=True)
|
140 |
for pdf_name in pdf_names:
|
141 |
+
matched_file = next((f for f in uploaded_files if f.name == pdf_name), None)
|
142 |
+
if matched_file:
|
143 |
with open(os.path.join(keyword_folder, pdf_name), "wb") as f:
|
144 |
f.write(matched_file.getvalue())
|
|
|
|
|
|
|
145 |
|
146 |
# Zip the folders
|
147 |
zip_buffer = BytesIO()
|