Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from huggingface_hub import from_pretrained_keras | |
| import numpy as np | |
| import logging | |
| from PIL import Image | |
| def fun(a): | |
| Im=Image.fromarray(a).resize((48,48)) | |
| reloaded_model = from_pretrained_keras('jmparejaz/Facial_Age-gender-eth_Recognition') | |
| reloaded_model_eth = from_pretrained_keras('jmparejaz/Facial_eth_recognition') | |
| #img=load_img(a, grayscale=True) | |
| a=np.asarray(Im) | |
| a=a.reshape(1, 48, 48, 1) | |
| a=a/255 | |
| #reshape((-1,48,48,1)) | |
| pred=reloaded_model.predict(a) | |
| pred_eth=reloaded_model_eth.predict(a) | |
| #dict_gender={0:'Male',1:'Female'} | |
| #dict_eth={0:"White", 1:"Black", 2:"Asian", 3:"Indian", 4:"Hispanic"} | |
| #a = dict_gender[pred[0][0][0]] | |
| b = np.round(pred[1][0][0]) | |
| #c = dict_eth[np.argmax(pred_eth)] | |
| return pred[0][0][0],b,np.argmax(pred_eth) | |
| gr.Interface(fn=fun, inputs=gr.inputs.Image(image_mode='L',type='numpy',invert_colors=False), outputs=["text","text","text"]).launch() |