"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langchain.agents import Tool, initialize_agent
from langchain.tools.retriever import create_retriever_tool
from langchain_community.document_loaders import ArxivLoader, WikipediaLoader
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.tools import tool
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import (
ChatHuggingFace,
HuggingFaceEmbeddings,
HuggingFaceEndpoint,
)
from langchain_openai import ChatOpenAI
from langgraph.graph import START, MessagesState, StateGraph
from langgraph.prebuilt import ToolNode, tools_condition
from supabase.client import Client, create_client
load_dotenv()
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers.
Args:
a: first int
b: second int
"""
return a - b
@tool
def divide(a: int, b: int) -> int:
"""Divide two numbers.
Args:
a: first int
b: second int
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first int
b: second int
"""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content}\n'
for doc in search_docs
]
)
return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
search_docs = TavilySearchResults(max_results=3).invoke(
query
) # Fixed: pass query as positional argument
return {"web_results": search_docs} # Also fixed the return type issue
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content[:1000]}\n'
for doc in search_docs
]
)
return {"arvix_results": formatted_search_docs}
def test_supabase_connection():
load_dotenv()
try:
supabase = create_client(
os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY")
)
# Test query
result = supabase.table("documents").select("*").limit(1).execute()
print("Connection successful!")
return True
except Exception as e:
print(f"Connection failed: {e}")
return False
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
# build a retriever
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-mpnet-base-v2"
) # dim=768
supabase: Client = create_client(
os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY")
)
vector_store = SupabaseVectorStore(
client=supabase,
embedding=embeddings,
table_name="documents",
query_name="match_documents_langchain",
)
create_retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question Search",
description="A tool to retrieve similar questions from a vector store.",
)
test_supabase_connection()
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arvix_search,
]
# Build graph function
def build_graph(provider: str = "google"):
"""Build the graph"""
# Load environment variables from .env file
if provider == "google":
# Google Gemini
llm = ChatGoogleGenerativeAI(
model="gemini-2.5-flash-preview-05-20", temperature=0
)
elif provider == "groq":
# Groq https://console.groq.com/docs/models
llm = ChatGroq(
model="qwen-qwq-32b", temperature=0
) # optional : qwen-qwq-32b gemma2-9b-it
elif provider == "openai":
# OpenAI
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0,
),
)
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# Node
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever(state: MessagesState):
"""Retriever node"""
try:
# Use the vector store to find similar questions
similar_question = vector_store.similarity_search(
state["messages"][0].content
)
if not similar_question:
raise ValueError("No similar questions found.")
except Exception as e:
print(f"Error occurred while searching for similar questions: {e}")
return {"messages": [sys_msg] + state["messages"]}
example_msg = HumanMessage(
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
)
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
# Compile graph
return builder.compile()