import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel # --- 模型加载配置 --- ADAPTER_REPO_ID = "jinv2/gpt2-lora-trajectory-prediction" BASE_MODEL_NAME = "gpt2" # --- 加载模型和分词器 --- # 这是一个耗时操作,Gradio应用启动时会执行一次 print(f"开始加载模型: {BASE_MODEL_NAME} 和适配器: {ADAPTER_REPO_ID}") try: base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_NAME) tokenizer = AutoTokenizer.from_pretrained(ADAPTER_REPO_ID) # 适配器仓库通常包含分词器配置 if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token print("tokenizer.pad_token 设置为 tokenizer.eos_token") model = PeftModel.from_pretrained(base_model, ADAPTER_REPO_ID) model.eval() # 设置为评估模式 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) print(f"模型和分词器加载完成,运行在: {device}") except Exception as e: print(f"模型加载失败: {e}") # 如果模型加载失败,Gradio界面可能无法正常工作,这里可以抛出错误或设置一个标志 model = None tokenizer = None raise RuntimeError(f"无法加载模型: {e}") # --- 推理函数 --- def predict_trajectory(history_text_input): if model is None or tokenizer is None: return "错误: 模型未能成功加载,请检查Space的日志。" if not history_text_input or not history_text_input.strip(): return "错误: 请输入有效的历史轨迹。" # 格式化为模型期望的输入 # 假设用户只输入历史点,例如 "1.00,1.00,0.50,0.00; 1.05,1.00,0.50,0.00" prompt = f"历史: {history_text_input.strip()}; 预测:" print(f"收到的提示: {prompt}") try: inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=60, # 调整以适应预期的输出长度 (例如2-3个点) num_return_sequences=1, pad_token_id=tokenizer.pad_token_id, # 使用pad_token_id eos_token_id=tokenizer.eos_token_id, # temperature=0.7, # 如果想要一些随机性 # do_sample=True, # 如果想要一些随机性 do_sample=False, # 为了演示的确定性 num_beams=1 # 使用贪婪解码 ) generated_text_full = tokenizer.decode(outputs[0], skip_special_tokens=True) print(f"完整生成文本: {generated_text_full}") predicted_part = "" # 从完整输出中提取预测部分 if "预测:" in generated_text_full: split_output = generated_text_full.split("预测:", 1) if len(split_output) > 1: predicted_part = split_output[1].strip() # 清理可能的末尾分号或eos token的文本残留 if predicted_part.endswith(tokenizer.eos_token): predicted_part = predicted_part[:-len(tokenizer.eos_token)].strip() if predicted_part.endswith(';'): predicted_part = predicted_part[:-1].strip() else: # 如果模型输出不包含 "预测:",尝试从提示后截取 # 这部分逻辑可能需要根据模型的实际输出行为调整 if prompt in generated_text_full: predicted_part = generated_text_full[len(prompt):].strip() else: # 假设模型只输出了预测部分 (可能需要更鲁棒的逻辑) predicted_part = generated_text_full.strip() # 基本回退 if predicted_part.endswith(tokenizer.eos_token): predicted_part = predicted_part[:-len(tokenizer.eos_token)].strip() if predicted_part.endswith(';'): predicted_part = predicted_part[:-1].strip() print(f"提取的预测部分: {predicted_part}") return predicted_part except Exception as e: print(f"推理时发生错误: {e}") import traceback traceback.print_exc() return f"推理错误: {str(e)}" # --- 创建 Gradio 界面 --- # 使用 gr.Markdown 来显示更丰富的文本和说明 readme_url = f"https://huggingface.co/{ADAPTER_REPO_ID}" description = f""" # GPT-2 LoRA 轨迹预测 Demo 这是一个使用微调后的 `gpt2` 模型进行轨迹预测的简单演示。 模型仓库: [{ADAPTER_REPO_ID}]({readme_url}) **如何使用:** 1. 在下面的 "历史轨迹输入" 框中输入历史轨迹点。 2. 格式应为: `x1,y1,vx1,vy1; x2,y2,vx2,vy2` (例如,两个历史点,用分号隔开)。 3. 每个点包含四个逗号分隔的数值: x坐标, y坐标, x方向速度, y方向速度。 4. 点击 "预测轨迹" 按钮查看模型生成的未来轨迹点。 """ # 示例输入 example_history = "0.00,0.00,1.00,0.00; 0.10,0.00,1.00,0.00" # 定义界面组件 iface = gr.Interface( fn=predict_trajectory, inputs=gr.Textbox( lines=3, placeholder="例如: 0.00,0.00,1.00,0.00; 0.10,0.00,1.00,0.00", label="历史轨迹输入 (格式: x1,y1,vx1,vy1; x2,y2,vx2,vy2; ...)", value=example_history # 设置一个默认示例值 ), outputs=gr.Textbox( lines=3, label="模型预测的未来轨迹 (文本格式)" ), title="基于LLM的轨迹预测", description=description, examples=[ ["1.00,1.00,0.50,0.00; 1.05,1.00,0.50,0.00"], ["-2.0,0.5,0.0,1.0; -2.0,0.6,0.0,1.0; -2.0,0.7,0.0,1.0"], # 三个历史点 ["0.0,0.0,0.2,0.2; 0.02,0.02,0.2,0.2"] ], allow_flagging='never' # 通常用于演示,不需要用户标记 ) # 启动 Gradio 应用 (在 Hugging Face Spaces 上会自动处理) if __name__ == "__main__": if model is not None and tokenizer is not None: # 仅当模型加载成功时启动 print("正在本地启动Gradio应用...") iface.launch() else: print("模型未能加载,Gradio应用无法启动。请检查日志。")