Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from peft import PeftModel
|
5 |
+
|
6 |
+
# --- 模型加载配置 ---
|
7 |
+
ADAPTER_REPO_ID = "jinv2/gpt2-lora-trajectory-prediction"
|
8 |
+
BASE_MODEL_NAME = "gpt2"
|
9 |
+
|
10 |
+
# --- 加载模型和分词器 ---
|
11 |
+
# 这是一个耗时操作,Gradio应用启动时会执行一次
|
12 |
+
print(f"开始加载模型: {BASE_MODEL_NAME} 和适配器: {ADAPTER_REPO_ID}")
|
13 |
+
try:
|
14 |
+
base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_NAME)
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(ADAPTER_REPO_ID) # 适配器仓库通常包含分词器配置
|
16 |
+
|
17 |
+
if tokenizer.pad_token is None:
|
18 |
+
tokenizer.pad_token = tokenizer.eos_token
|
19 |
+
print("tokenizer.pad_token 设置为 tokenizer.eos_token")
|
20 |
+
|
21 |
+
model = PeftModel.from_pretrained(base_model, ADAPTER_REPO_ID)
|
22 |
+
model.eval() # 设置为评估模式
|
23 |
+
|
24 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
+
model.to(device)
|
26 |
+
print(f"模型和分词器加载完成,运行在: {device}")
|
27 |
+
except Exception as e:
|
28 |
+
print(f"模型加载失败: {e}")
|
29 |
+
# 如果模型加载失败,Gradio界面可能无法正常工作,这里可以抛出错误或设置一个标志
|
30 |
+
model = None
|
31 |
+
tokenizer = None
|
32 |
+
raise RuntimeError(f"无法加载模型: {e}")
|
33 |
+
|
34 |
+
|
35 |
+
# --- 推理函数 ---
|
36 |
+
def predict_trajectory(history_text_input):
|
37 |
+
if model is None or tokenizer is None:
|
38 |
+
return "错误: 模型未能成功加载,请检查Space的日志。"
|
39 |
+
|
40 |
+
if not history_text_input or not history_text_input.strip():
|
41 |
+
return "错误: 请输入有效的历史轨迹。"
|
42 |
+
|
43 |
+
# 格式化为模型期望的输入
|
44 |
+
# 假设用户只输入历史点,例如 "1.00,1.00,0.50,0.00; 1.05,1.00,0.50,0.00"
|
45 |
+
prompt = f"历史: {history_text_input.strip()}; 预测:"
|
46 |
+
print(f"收到的提示: {prompt}")
|
47 |
+
|
48 |
+
try:
|
49 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(device)
|
50 |
+
|
51 |
+
with torch.no_grad():
|
52 |
+
outputs = model.generate(
|
53 |
+
**inputs,
|
54 |
+
max_new_tokens=60, # 调整以适应预期的输出长度 (例如2-3个点)
|
55 |
+
num_return_sequences=1,
|
56 |
+
pad_token_id=tokenizer.pad_token_id, # 使用pad_token_id
|
57 |
+
eos_token_id=tokenizer.eos_token_id,
|
58 |
+
# temperature=0.7, # 如果想要一些随机性
|
59 |
+
# do_sample=True, # 如果想要一些随机性
|
60 |
+
do_sample=False, # 为了演示的确定性
|
61 |
+
num_beams=1 # 使用贪婪解码
|
62 |
+
)
|
63 |
+
|
64 |
+
generated_text_full = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
65 |
+
print(f"完整生成文本: {generated_text_full}")
|
66 |
+
|
67 |
+
predicted_part = ""
|
68 |
+
# 从完整输出中提取预测部分
|
69 |
+
if "预测:" in generated_text_full:
|
70 |
+
split_output = generated_text_full.split("预测:", 1)
|
71 |
+
if len(split_output) > 1:
|
72 |
+
predicted_part = split_output[1].strip()
|
73 |
+
# 清理可能的末尾分号或eos token的文本残留
|
74 |
+
if predicted_part.endswith(tokenizer.eos_token):
|
75 |
+
predicted_part = predicted_part[:-len(tokenizer.eos_token)].strip()
|
76 |
+
if predicted_part.endswith(';'):
|
77 |
+
predicted_part = predicted_part[:-1].strip()
|
78 |
+
else:
|
79 |
+
# 如果模型输出不包含 "预测:",尝试从提示后截取
|
80 |
+
# 这部分逻辑可能需要根据模型的实际输出行为调整
|
81 |
+
if prompt in generated_text_full:
|
82 |
+
predicted_part = generated_text_full[len(prompt):].strip()
|
83 |
+
else: # 假设模型只输出了预测部分 (可能需要更鲁棒的逻辑)
|
84 |
+
predicted_part = generated_text_full.strip() # 基本回退
|
85 |
+
|
86 |
+
if predicted_part.endswith(tokenizer.eos_token):
|
87 |
+
predicted_part = predicted_part[:-len(tokenizer.eos_token)].strip()
|
88 |
+
if predicted_part.endswith(';'):
|
89 |
+
predicted_part = predicted_part[:-1].strip()
|
90 |
+
|
91 |
+
|
92 |
+
print(f"提取的预测部分: {predicted_part}")
|
93 |
+
return predicted_part
|
94 |
+
|
95 |
+
except Exception as e:
|
96 |
+
print(f"推理时发生错误: {e}")
|
97 |
+
import traceback
|
98 |
+
traceback.print_exc()
|
99 |
+
return f"推理错误: {str(e)}"
|
100 |
+
|
101 |
+
# --- 创建 Gradio 界面 ---
|
102 |
+
# 使用 gr.Markdown 来显示更丰富的文本和说明
|
103 |
+
readme_url = f"https://huggingface.co/{ADAPTER_REPO_ID}"
|
104 |
+
description = f"""
|
105 |
+
# GPT-2 LoRA 轨迹预测 Demo
|
106 |
+
这是一个使用微调后的 `gpt2` 模型进行轨迹预测的简单演示。
|
107 |
+
模型仓库: [{ADAPTER_REPO_ID}]({readme_url})
|
108 |
+
|
109 |
+
**如何使用:**
|
110 |
+
1. 在下面的 "历史轨迹输入" 框中输入历史轨迹点。
|
111 |
+
2. 格式应为: `x1,y1,vx1,vy1; x2,y2,vx2,vy2` (例如,两个历史点,用分号隔开)。
|
112 |
+
3. 每个点包含四个逗号分隔的数值: x坐标, y坐标, x方向速度, y方向速度。
|
113 |
+
4. 点击 "预测轨迹" 按钮查看模型生成的未来轨迹点。
|
114 |
+
"""
|
115 |
+
|
116 |
+
# 示例输入
|
117 |
+
example_history = "0.00,0.00,1.00,0.00; 0.10,0.00,1.00,0.00"
|
118 |
+
|
119 |
+
|
120 |
+
# 定义界面组件
|
121 |
+
iface = gr.Interface(
|
122 |
+
fn=predict_trajectory,
|
123 |
+
inputs=gr.Textbox(
|
124 |
+
lines=3,
|
125 |
+
placeholder="例如: 0.00,0.00,1.00,0.00; 0.10,0.00,1.00,0.00",
|
126 |
+
label="历史轨迹输入 (格式: x1,y1,vx1,vy1; x2,y2,vx2,vy2; ...)",
|
127 |
+
value=example_history # 设置一个默认示例值
|
128 |
+
),
|
129 |
+
outputs=gr.Textbox(
|
130 |
+
lines=3,
|
131 |
+
label="模型预测的未来轨迹 (文本格式)"
|
132 |
+
),
|
133 |
+
title="基于LLM的轨迹预测",
|
134 |
+
description=description,
|
135 |
+
examples=[
|
136 |
+
["1.00,1.00,0.50,0.00; 1.05,1.00,0.50,0.00"],
|
137 |
+
["-2.0,0.5,0.0,1.0; -2.0,0.6,0.0,1.0; -2.0,0.7,0.0,1.0"], # 三个历史点
|
138 |
+
["0.0,0.0,0.2,0.2; 0.02,0.02,0.2,0.2"]
|
139 |
+
],
|
140 |
+
allow_flagging='never' # 通常用于演示,不需要用户标记
|
141 |
+
)
|
142 |
+
|
143 |
+
# 启动 Gradio 应用 (在 Hugging Face Spaces 上会自动处理)
|
144 |
+
if __name__ == "__main__":
|
145 |
+
if model is not None and tokenizer is not None: # 仅当模型加载成功时启动
|
146 |
+
print("正在本地启动Gradio应用...")
|
147 |
+
iface.launch()
|
148 |
+
else:
|
149 |
+
print("模型未能加载,Gradio应用无法启动。请检查日志。")
|