Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import onnxruntime as ort
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import io
|
| 6 |
+
import rdkit
|
| 7 |
+
from rdkit import Chem
|
| 8 |
+
from rdkit.Chem import Draw
|
| 9 |
+
|
| 10 |
+
def preprocess_image(image):
|
| 11 |
+
"""
|
| 12 |
+
预处理输入图片
|
| 13 |
+
"""
|
| 14 |
+
# 将图片调整为模型所需的输入尺寸
|
| 15 |
+
image = image.resize((224, 224)) # 根据实际模型需求调整尺寸
|
| 16 |
+
# 转换为numpy数组并归一化
|
| 17 |
+
img_array = np.array(image)
|
| 18 |
+
img_array = img_array.astype(np.float32) / 255.0
|
| 19 |
+
# 添加批次维度
|
| 20 |
+
img_array = np.expand_dims(img_array, axis=0)
|
| 21 |
+
# 根据模型训练时的预处理方式进行调整
|
| 22 |
+
img_array = img_array.transpose(0, 3, 1, 2) # BHWC to BCHW
|
| 23 |
+
return img_array
|
| 24 |
+
|
| 25 |
+
def visualize_molecule(smiles):
|
| 26 |
+
"""
|
| 27 |
+
使用RDKit将SMILES转换为分子结构图
|
| 28 |
+
"""
|
| 29 |
+
try:
|
| 30 |
+
mol = Chem.MolFromSmiles(smiles)
|
| 31 |
+
if mol is None:
|
| 32 |
+
return None
|
| 33 |
+
img = Draw.MolToImage(mol)
|
| 34 |
+
return img
|
| 35 |
+
except:
|
| 36 |
+
return None
|
| 37 |
+
|
| 38 |
+
def predict(input_image):
|
| 39 |
+
"""
|
| 40 |
+
主要的推理函数
|
| 41 |
+
"""
|
| 42 |
+
try:
|
| 43 |
+
# 加载和初始化ONNX模型
|
| 44 |
+
session = ort.InferenceSession("model.onnx") # 替换为实际模型路径
|
| 45 |
+
|
| 46 |
+
# 预处理图片
|
| 47 |
+
processed_image = preprocess_image(input_image)
|
| 48 |
+
|
| 49 |
+
# 获取模型输入输出名称
|
| 50 |
+
input_name = session.get_inputs()[0].name
|
| 51 |
+
output_name = session.get_outputs()[0].name
|
| 52 |
+
|
| 53 |
+
# 进行推理
|
| 54 |
+
predictions = session.run([output_name], {input_name: processed_image})
|
| 55 |
+
|
| 56 |
+
# 假设模型输出是SMILES字符串
|
| 57 |
+
smiles = predictions[0][0] # 根据实际模型输出格式调整
|
| 58 |
+
|
| 59 |
+
# 使用RDKit生成分子结构图
|
| 60 |
+
mol_image = visualize_molecule(smiles)
|
| 61 |
+
|
| 62 |
+
if mol_image is None:
|
| 63 |
+
return "无效的SMILES字符串", None
|
| 64 |
+
|
| 65 |
+
return smiles, mol_image
|
| 66 |
+
|
| 67 |
+
except Exception as e:
|
| 68 |
+
return f"发生错误: {str(e)}", None
|
| 69 |
+
|
| 70 |
+
# 创建Gradio界面
|
| 71 |
+
iface = gr.Interface(
|
| 72 |
+
fn=predict,
|
| 73 |
+
inputs=gr.Image(type="pil"),
|
| 74 |
+
outputs=[
|
| 75 |
+
gr.Text(label="SMILES字符串"),
|
| 76 |
+
gr.Image(label="分子结构图")
|
| 77 |
+
],
|
| 78 |
+
title="化学结构OCR",
|
| 79 |
+
description="上传一张包含化学结构的图片,获取对应的SMILES表示和分子结构图。",
|
| 80 |
+
examples=[
|
| 81 |
+
["example1.jpg"], # 添加示例图片
|
| 82 |
+
["example2.jpg"]
|
| 83 |
+
]
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# 启动应用
|
| 87 |
+
if __name__ == "__main__":
|
| 88 |
+
iface.launch()
|