Update app.py
Browse files
app.py
CHANGED
|
@@ -20,7 +20,6 @@ idx_to_labels = {0:'other',1:'C',2:'O',3:'N',4:'Cl',5:'Br',6:'S',7:'F',8:'B',
|
|
| 20 |
|
| 21 |
def image_to_numpy(image_path):
|
| 22 |
|
| 23 |
-
# image = Image.open(image_path)
|
| 24 |
w, h = image_path.size
|
| 25 |
|
| 26 |
img_array = np.array(image_path)
|
|
@@ -37,9 +36,7 @@ def image_to_numpy(image_path):
|
|
| 37 |
|
| 38 |
|
| 39 |
def visualize_molecule(smiles):
|
| 40 |
-
|
| 41 |
-
使用RDKit将SMILES转换为分子结构图
|
| 42 |
-
"""
|
| 43 |
try:
|
| 44 |
mol = Chem.MolFromSmiles(smiles)
|
| 45 |
if mol is None:
|
|
@@ -50,23 +47,16 @@ def visualize_molecule(smiles):
|
|
| 50 |
return None
|
| 51 |
|
| 52 |
def predict(input_image):
|
| 53 |
-
|
| 54 |
-
主要的推理函数
|
| 55 |
-
"""
|
| 56 |
try:
|
| 57 |
-
# 加载和初始化ONNX模型
|
| 58 |
session = ort.InferenceSession("model.onnx")
|
| 59 |
|
| 60 |
-
# 预处理图片
|
| 61 |
-
# Example usage: #change thie image
|
| 62 |
img_array,w,h = image_to_numpy(input_image)
|
| 63 |
processed_image=np.expand_dims(img_array, 0)
|
| 64 |
-
|
| 65 |
-
# 获取模型输入输出名称
|
| 66 |
input_name = session.get_inputs()[0].name
|
| 67 |
output_name = session.get_outputs()[0].name
|
| 68 |
-
|
| 69 |
-
# 进行推理
|
| 70 |
outputs = session.run(None, {input_name: processed_image})
|
| 71 |
preds = {'pred_logits':torch.from_numpy(outputs[0]), 'pred_boxes':torch.from_numpy(outputs[1])}
|
| 72 |
ori_size=torch.Tensor([w,h]).long().unsqueeze(0)
|
|
@@ -82,10 +72,6 @@ def predict(input_image):
|
|
| 82 |
'scores': score_[selected_indices]
|
| 83 |
}
|
| 84 |
|
| 85 |
-
# filtered_output_dict={image_path: output
|
| 86 |
-
# }
|
| 87 |
-
|
| 88 |
-
|
| 89 |
x_center = (output["boxes"][:, 0] + output["boxes"][:, 2]) / 2
|
| 90 |
y_center = (output["boxes"][:, 1] + output["boxes"][:, 3]) / 2
|
| 91 |
center_coords = torch.stack((x_center, y_center), dim=1)
|
|
@@ -98,32 +84,30 @@ def predict(input_image):
|
|
| 98 |
bond_labels=bond_labels, result=[])
|
| 99 |
smiles, mol_rebuit = mol_from_graph_with_chiral(atoms_df, bonds_list)
|
| 100 |
|
| 101 |
-
# 使用RDKit生成分子结构图
|
| 102 |
mol_image = visualize_molecule(smiles)
|
| 103 |
|
| 104 |
if mol_image is None:
|
| 105 |
-
return "
|
| 106 |
|
| 107 |
return smiles, mol_image
|
| 108 |
|
| 109 |
except Exception as e:
|
| 110 |
-
return f"
|
| 111 |
|
| 112 |
-
# 创建Gradio界面
|
| 113 |
iface = gr.Interface(
|
| 114 |
fn=predict,
|
| 115 |
-
inputs=gr.Image(type="pil"),
|
| 116 |
outputs=[
|
| 117 |
-
gr.
|
| 118 |
-
gr.
|
|
|
|
| 119 |
],
|
| 120 |
-
title="
|
| 121 |
-
description="
|
| 122 |
examples=[
|
| 123 |
["example.png"]
|
| 124 |
]
|
| 125 |
)
|
| 126 |
|
| 127 |
-
# 启动应用
|
| 128 |
if __name__ == "__main__":
|
| 129 |
iface.launch()
|
|
|
|
| 20 |
|
| 21 |
def image_to_numpy(image_path):
|
| 22 |
|
|
|
|
| 23 |
w, h = image_path.size
|
| 24 |
|
| 25 |
img_array = np.array(image_path)
|
|
|
|
| 36 |
|
| 37 |
|
| 38 |
def visualize_molecule(smiles):
|
| 39 |
+
|
|
|
|
|
|
|
| 40 |
try:
|
| 41 |
mol = Chem.MolFromSmiles(smiles)
|
| 42 |
if mol is None:
|
|
|
|
| 47 |
return None
|
| 48 |
|
| 49 |
def predict(input_image):
|
| 50 |
+
|
|
|
|
|
|
|
| 51 |
try:
|
|
|
|
| 52 |
session = ort.InferenceSession("model.onnx")
|
| 53 |
|
|
|
|
|
|
|
| 54 |
img_array,w,h = image_to_numpy(input_image)
|
| 55 |
processed_image=np.expand_dims(img_array, 0)
|
| 56 |
+
|
|
|
|
| 57 |
input_name = session.get_inputs()[0].name
|
| 58 |
output_name = session.get_outputs()[0].name
|
| 59 |
+
|
|
|
|
| 60 |
outputs = session.run(None, {input_name: processed_image})
|
| 61 |
preds = {'pred_logits':torch.from_numpy(outputs[0]), 'pred_boxes':torch.from_numpy(outputs[1])}
|
| 62 |
ori_size=torch.Tensor([w,h]).long().unsqueeze(0)
|
|
|
|
| 72 |
'scores': score_[selected_indices]
|
| 73 |
}
|
| 74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
x_center = (output["boxes"][:, 0] + output["boxes"][:, 2]) / 2
|
| 76 |
y_center = (output["boxes"][:, 1] + output["boxes"][:, 3]) / 2
|
| 77 |
center_coords = torch.stack((x_center, y_center), dim=1)
|
|
|
|
| 84 |
bond_labels=bond_labels, result=[])
|
| 85 |
smiles, mol_rebuit = mol_from_graph_with_chiral(atoms_df, bonds_list)
|
| 86 |
|
|
|
|
| 87 |
mol_image = visualize_molecule(smiles)
|
| 88 |
|
| 89 |
if mol_image is None:
|
| 90 |
+
return "Invalid SMILES", None
|
| 91 |
|
| 92 |
return smiles, mol_image
|
| 93 |
|
| 94 |
except Exception as e:
|
| 95 |
+
return f"Error: {str(e)}", None
|
| 96 |
|
|
|
|
| 97 |
iface = gr.Interface(
|
| 98 |
fn=predict,
|
| 99 |
+
inputs=gr.Image(label="Upload molecular image", type="pil", show_label=False).style(height=256),
|
| 100 |
outputs=[
|
| 101 |
+
gr.Image(label="Prediction").style(height=256),
|
| 102 |
+
gr.Text(label="SMILES").style(show_copy_button=True),
|
| 103 |
+
gr.Textbox(label="Molfile").style(show_copy_button=True),
|
| 104 |
],
|
| 105 |
+
title="OCSR",
|
| 106 |
+
description="Convert a molecular image into SMILES.<br> ",
|
| 107 |
examples=[
|
| 108 |
["example.png"]
|
| 109 |
]
|
| 110 |
)
|
| 111 |
|
|
|
|
| 112 |
if __name__ == "__main__":
|
| 113 |
iface.launch()
|