Upload utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,527 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import json
|
3 |
+
import math
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
import torch
|
7 |
+
from scipy.spatial import cKDTree
|
8 |
+
from rdkit import Chem
|
9 |
+
from rdkit.Chem import RWMol
|
10 |
+
from rdkit.Chem import Draw, AllChem
|
11 |
+
from rdkit.Chem import rdDepictor
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import re
|
14 |
+
|
15 |
+
def output_to_smiles(output,idx_to_labels,bond_labels,result):
|
16 |
+
|
17 |
+
x_center = (output["boxes"][:, 0] + output["boxes"][:, 2]) / 2
|
18 |
+
y_center = (output["boxes"][:, 1] + output["boxes"][:, 3]) / 2
|
19 |
+
|
20 |
+
center_coords = torch.stack((x_center, y_center), dim=1)
|
21 |
+
|
22 |
+
output = {'bbox': output["boxes"].to("cpu").numpy(),
|
23 |
+
'bbox_centers': center_coords.to("cpu").numpy(),
|
24 |
+
'scores': output["scores"].to("cpu").numpy(),
|
25 |
+
'pred_classes': output["labels"].to("cpu").numpy()}
|
26 |
+
|
27 |
+
|
28 |
+
atoms_list, bonds_list = bbox_to_graph_with_charge(output,
|
29 |
+
idx_to_labels=idx_to_labels,
|
30 |
+
bond_labels=bond_labels,
|
31 |
+
result=result)
|
32 |
+
#NOTE print
|
33 |
+
return mol_from_graph_with_chiral(atoms_list, bonds_list)
|
34 |
+
|
35 |
+
|
36 |
+
def bbox_to_graph(output, idx_to_labels, bond_labels,result):
|
37 |
+
|
38 |
+
# calculate atoms mask (pred classes that are atoms/bonds)
|
39 |
+
atoms_mask = np.array([True if ins not in bond_labels else False for ins in output['pred_classes']])
|
40 |
+
|
41 |
+
# get atom list
|
42 |
+
atoms_list = [idx_to_labels[a] for a in output['pred_classes'][atoms_mask]]
|
43 |
+
|
44 |
+
# if len(result) !=0 and 'other' in atoms_list:
|
45 |
+
# new_list = []
|
46 |
+
# replace_index = 0
|
47 |
+
# for item in atoms_list:
|
48 |
+
# if item == 'other':
|
49 |
+
# new_list.append(result[replace_index % len(result)])
|
50 |
+
# replace_index += 1
|
51 |
+
# else:
|
52 |
+
# new_list.append(item)
|
53 |
+
# atoms_list = new_list
|
54 |
+
|
55 |
+
atoms_list = pd.DataFrame({'atom': atoms_list,
|
56 |
+
'x': output['bbox_centers'][atoms_mask, 0],
|
57 |
+
'y': output['bbox_centers'][atoms_mask, 1]})
|
58 |
+
|
59 |
+
# in case atoms with sign gets detected two times, keep only the signed one
|
60 |
+
for idx, row in atoms_list.iterrows():
|
61 |
+
if row.atom[-1] != '0':
|
62 |
+
if row.atom[-2] != '-':#assume charge value -9~9
|
63 |
+
overlapping = atoms_list[atoms_list.atom.str.startswith(row.atom[:-1])]
|
64 |
+
else:
|
65 |
+
overlapping = atoms_list[atoms_list.atom.str.startswith(row.atom[:-2])]
|
66 |
+
|
67 |
+
kdt = cKDTree(overlapping[['x', 'y']])
|
68 |
+
dists, neighbours = kdt.query([row.x, row.y], k=2)
|
69 |
+
if dists[1] < 7:
|
70 |
+
atoms_list.drop(overlapping.index[neighbours[1]], axis=0, inplace=True)
|
71 |
+
|
72 |
+
bonds_list = []
|
73 |
+
|
74 |
+
# get bonds
|
75 |
+
for bbox, bond_type, score in zip(output['bbox'][np.logical_not(atoms_mask)],
|
76 |
+
output['pred_classes'][np.logical_not(atoms_mask)],
|
77 |
+
output['scores'][np.logical_not(atoms_mask)]):
|
78 |
+
|
79 |
+
# if idx_to_labels[bond_type] == 'SINGLE':
|
80 |
+
if idx_to_labels[bond_type] in ['-','SINGLE', 'NONE', 'ENDUPRIGHT', 'BEGINWEDGE', 'BEGINDASH', 'ENDDOWNRIGHT']:
|
81 |
+
_margin = 5
|
82 |
+
else:
|
83 |
+
_margin = 8
|
84 |
+
|
85 |
+
# anchor positions are _margin distances away from the corners of the bbox.
|
86 |
+
anchor_positions = (bbox + [_margin, _margin, -_margin, -_margin]).reshape([2, -1])
|
87 |
+
oposite_anchor_positions = anchor_positions.copy()
|
88 |
+
oposite_anchor_positions[:, 1] = oposite_anchor_positions[:, 1][::-1]
|
89 |
+
|
90 |
+
# Upper left, lower right, lower left, upper right
|
91 |
+
# 0 - 1, 2 - 3
|
92 |
+
anchor_positions = np.concatenate([anchor_positions, oposite_anchor_positions])
|
93 |
+
|
94 |
+
# get the closest point to every corner
|
95 |
+
atoms_pos = atoms_list[['x', 'y']].values
|
96 |
+
kdt = cKDTree(atoms_pos)
|
97 |
+
dists, neighbours = kdt.query(anchor_positions, k=1)
|
98 |
+
|
99 |
+
# check corner with the smallest total distance to closest atoms
|
100 |
+
if np.argmin((dists[0] + dists[1], dists[2] + dists[3])) == 0:
|
101 |
+
# visualize setup
|
102 |
+
begin_idx, end_idx = neighbours[:2]
|
103 |
+
else:
|
104 |
+
# visualize setup
|
105 |
+
begin_idx, end_idx = neighbours[2:]
|
106 |
+
|
107 |
+
#NOTE this proces may lead self-bonding for one atom
|
108 |
+
if begin_idx != end_idx:# avoid self-bond
|
109 |
+
bonds_list.append((begin_idx, end_idx, idx_to_labels[bond_type], idx_to_labels[bond_type], score))
|
110 |
+
else:
|
111 |
+
continue
|
112 |
+
# return atoms_list.atom.values.tolist(), bonds_list
|
113 |
+
return atoms_list, bonds_list
|
114 |
+
|
115 |
+
|
116 |
+
def calculate_distance(coord1, coord2):
|
117 |
+
# Calculate Euclidean distance between two coordinates
|
118 |
+
return math.sqrt((coord1[0] - coord2[0])**2 + (coord1[1] - coord2[1])**2)
|
119 |
+
|
120 |
+
def assemble_atoms_with_charges(atom_list, charge_list):
|
121 |
+
used_charge_indices=set()
|
122 |
+
atom_list['atom'] = atom_list['atom'] + '0'
|
123 |
+
kdt = cKDTree(atom_list[['x','y']])
|
124 |
+
for i, charge in charge_list.iterrows():
|
125 |
+
if i in used_charge_indices:
|
126 |
+
continue
|
127 |
+
charge_=charge['charge']
|
128 |
+
if charge_=='1':charge_='+'
|
129 |
+
dist, idx_atom=kdt.query([charge_list.x[i],charge_list.y[i]], k=1)
|
130 |
+
atom_str=atom_list.loc[idx_atom,'atom']
|
131 |
+
atom_ = re.findall(r'[A-Za-z]+', atom_str)[0] + charge_
|
132 |
+
atom_list.loc[idx_atom,'atom']=atom_
|
133 |
+
|
134 |
+
return atom_list
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
def assemble_atoms_with_charges2(atom_list, charge_list, max_distance=10):
|
139 |
+
used_charge_indices = set()
|
140 |
+
|
141 |
+
for idx, atom in atom_list.iterrows():
|
142 |
+
atom_coord = atom['x'],atom['y']
|
143 |
+
atom_label = atom['atom']
|
144 |
+
closest_charge = None
|
145 |
+
min_distance = float('inf')
|
146 |
+
|
147 |
+
for i, charge in charge_list.iterrows():
|
148 |
+
if i in used_charge_indices:
|
149 |
+
continue
|
150 |
+
|
151 |
+
charge_coord = charge['x'],charge['y']
|
152 |
+
charge_label = charge['charge']
|
153 |
+
|
154 |
+
distance = calculate_distance(atom_coord, charge_coord)
|
155 |
+
#NOTE how t determin this max_distance, dependent on image size??
|
156 |
+
if distance <= max_distance and distance < min_distance:
|
157 |
+
closest_charge = charge
|
158 |
+
min_distance = distance
|
159 |
+
|
160 |
+
|
161 |
+
if closest_charge is not None:
|
162 |
+
if closest_charge['charge'] == '1':
|
163 |
+
charge_ = '+'
|
164 |
+
else:
|
165 |
+
charge_ = closest_charge['charge']
|
166 |
+
atom_ = atom['atom'] + charge_
|
167 |
+
|
168 |
+
# atom['atom'] = atom_
|
169 |
+
atom_list.loc[idx,'atom'] = atom_
|
170 |
+
used_charge_indices.add(tuple(charge))
|
171 |
+
|
172 |
+
else:
|
173 |
+
# atom['atom'] = atom['atom'] + '0'
|
174 |
+
atom_list.loc[idx,'atom'] = atom['atom'] + '0'
|
175 |
+
|
176 |
+
return atom_list
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
def bbox_to_graph_with_charge(output, idx_to_labels, bond_labels,result):
|
181 |
+
|
182 |
+
bond_labels_pre=bond_labels
|
183 |
+
charge_labels = [18,19,20,21,22]#make influence
|
184 |
+
|
185 |
+
atoms_mask = np.array([True if ins not in bond_labels and ins not in charge_labels else False for ins in output['pred_classes']])
|
186 |
+
atoms_list = [idx_to_labels[a] for a in output['pred_classes'][atoms_mask]]
|
187 |
+
atoms_list = pd.DataFrame({'atom': atoms_list,
|
188 |
+
'x': output['bbox_centers'][atoms_mask, 0],
|
189 |
+
'y': output['bbox_centers'][atoms_mask, 1],
|
190 |
+
'bbox': output['bbox'][atoms_mask].tolist() ,#need this for */other converting
|
191 |
+
})
|
192 |
+
|
193 |
+
charge_mask = np.array([True if ins in charge_labels else False for ins in output['pred_classes']])
|
194 |
+
charge_list = [idx_to_labels[a] for a in output['pred_classes'][charge_mask]]
|
195 |
+
charge_list = pd.DataFrame({'charge': charge_list,
|
196 |
+
'x': output['bbox_centers'][charge_mask, 0],
|
197 |
+
'y': output['bbox_centers'][charge_mask, 1]})
|
198 |
+
|
199 |
+
# print(charge_list,'\n@bbox_to_graph_with_charge')
|
200 |
+
if len(charge_list) > 0:
|
201 |
+
atoms_list = assemble_atoms_with_charges(atoms_list,charge_list)
|
202 |
+
else:#Note Most mols are not formal charged
|
203 |
+
atoms_list['atom'] = atoms_list['atom']+'0'
|
204 |
+
# print(atoms_list,"after @@assemble_atoms_with_charges ")
|
205 |
+
# in case atoms with sign gets detected two times, keep only the signed one
|
206 |
+
for idx, row in atoms_list.iterrows():
|
207 |
+
if row.atom[-1] != '0':
|
208 |
+
try:
|
209 |
+
if row.atom[-2] != '-':#assume charge value -9~9
|
210 |
+
overlapping = atoms_list[atoms_list.atom.str.startswith(row.atom[:-1])]
|
211 |
+
except Exception as e:
|
212 |
+
print(row.atom,"@row.atom")
|
213 |
+
print(e)
|
214 |
+
else:
|
215 |
+
overlapping = atoms_list[atoms_list.atom.str.startswith(row.atom[:-2])]
|
216 |
+
|
217 |
+
kdt = cKDTree(overlapping[['x', 'y']])
|
218 |
+
dists, neighbours = kdt.query([row.x, row.y], k=2)
|
219 |
+
if dists[1] < 7:
|
220 |
+
atoms_list.drop(overlapping.index[neighbours[1]], axis=0, inplace=True)
|
221 |
+
|
222 |
+
bonds_list = []
|
223 |
+
# get bonds
|
224 |
+
# bond_mask=np.logical_not(np.logical_not(atoms_mask) | np.logical_not(charge_mask))
|
225 |
+
bond_mask=np.logical_not(atoms_mask) & np.logical_not(charge_mask)
|
226 |
+
for bbox, bond_type, score in zip(output['bbox'][bond_mask], #NOTE also including the charge part
|
227 |
+
output['pred_classes'][bond_mask],
|
228 |
+
output['scores'][bond_mask]):
|
229 |
+
|
230 |
+
# if idx_to_labels[bond_type] == 'SINGLE':
|
231 |
+
if idx_to_labels[bond_type] in ['-','SINGLE', 'NONE', 'ENDUPRIGHT', 'BEGINWEDGE', 'BEGINDASH', 'ENDDOWNRIGHT']:
|
232 |
+
_margin = 5
|
233 |
+
else:
|
234 |
+
_margin = 8
|
235 |
+
|
236 |
+
# anchor positions are _margin distances away from the corners of the bbox.
|
237 |
+
anchor_positions = (bbox + [_margin, _margin, -_margin, -_margin]).reshape([2, -1])
|
238 |
+
oposite_anchor_positions = anchor_positions.copy()
|
239 |
+
oposite_anchor_positions[:, 1] = oposite_anchor_positions[:, 1][::-1]
|
240 |
+
|
241 |
+
# Upper left, lower right, lower left, upper right
|
242 |
+
# 0 - 1, 2 - 3
|
243 |
+
anchor_positions = np.concatenate([anchor_positions, oposite_anchor_positions])
|
244 |
+
|
245 |
+
# get the closest point to every corner
|
246 |
+
atoms_pos = atoms_list[['x', 'y']].values
|
247 |
+
kdt = cKDTree(atoms_pos)
|
248 |
+
dists, neighbours = kdt.query(anchor_positions, k=1)
|
249 |
+
|
250 |
+
# check corner with the smallest total distance to closest atoms
|
251 |
+
if np.argmin((dists[0] + dists[1], dists[2] + dists[3])) == 0:
|
252 |
+
# visualize setup
|
253 |
+
begin_idx, end_idx = neighbours[:2]
|
254 |
+
else:
|
255 |
+
# visualize setup
|
256 |
+
begin_idx, end_idx = neighbours[2:]
|
257 |
+
|
258 |
+
#NOTE this proces may lead self-bonding for one atom
|
259 |
+
if begin_idx != end_idx:
|
260 |
+
if bond_type in bond_labels:# avoid self-bond
|
261 |
+
bonds_list.append((begin_idx, end_idx, idx_to_labels[bond_type], idx_to_labels[bond_type], score))
|
262 |
+
else:
|
263 |
+
print(f'this box may be charges box not bonds {[bbox, bond_type, score ]}')
|
264 |
+
else:
|
265 |
+
continue
|
266 |
+
# return atoms_list.atom.values.tolist(), bonds_list
|
267 |
+
# print(f"@box2graph: atom,bond nums:: {len(atoms_list)}, {len(bonds_list)}")
|
268 |
+
return atoms_list, bonds_list#dataframe, list
|
269 |
+
|
270 |
+
|
271 |
+
|
272 |
+
def mol_from_graph_with_chiral(atoms_list, bonds):
|
273 |
+
|
274 |
+
mol = RWMol()
|
275 |
+
nodes_idx = {}
|
276 |
+
atoms = atoms_list.atom.values.tolist()
|
277 |
+
coords = [(row['x'], 300-row['y'], 0) for index, row in atoms_list.iterrows()]
|
278 |
+
coords = tuple(coords)
|
279 |
+
coords = tuple(tuple(num / 100 for num in sub_tuple) for sub_tuple in coords)
|
280 |
+
|
281 |
+
# points = [(row['x'], 300-row['y']) for index, row in atoms_list.iterrows()]
|
282 |
+
# plt.figure(figsize=(6, 6))
|
283 |
+
# for point in points:
|
284 |
+
# plt.scatter(point[0], point[1], color='blue')
|
285 |
+
# plt.xlim(0, 300)
|
286 |
+
# plt.ylim(300, 0)
|
287 |
+
# plt.gca().set_aspect('equal', adjustable='box')
|
288 |
+
# plt.savefig('/home/jovyan/rt-detr/output/test/plot.png')
|
289 |
+
|
290 |
+
|
291 |
+
for i in range(len(bonds)):
|
292 |
+
idx_1, idx_2, bond_type, bond_dir, score = bonds[i]
|
293 |
+
if bond_type in ['-', 'NONE', 'ENDUPRIGHT', 'BEGINWEDGE', 'BEGINDASH', 'ENDDOWNRIGHT']:
|
294 |
+
bonds[i] = (idx_1, idx_2, 'SINGLE', bond_dir, score)
|
295 |
+
elif bond_type == '=':
|
296 |
+
bonds[i] = (idx_1, idx_2, 'DOUBLE', bond_dir, score)
|
297 |
+
elif bond_type == '#':
|
298 |
+
bonds[i] = (idx_1, idx_2, 'TRIPLE', bond_dir, score)
|
299 |
+
|
300 |
+
|
301 |
+
|
302 |
+
bond_types = {'SINGLE': Chem.rdchem.BondType.SINGLE,
|
303 |
+
'DOUBLE': Chem.rdchem.BondType.DOUBLE,
|
304 |
+
'TRIPLE': Chem.rdchem.BondType.TRIPLE,
|
305 |
+
'AROMATIC': Chem.rdchem.BondType.AROMATIC}
|
306 |
+
|
307 |
+
bond_dirs = {'NONE': Chem.rdchem.BondDir.NONE,
|
308 |
+
'ENDUPRIGHT': Chem.rdchem.BondDir.ENDUPRIGHT,
|
309 |
+
'BEGINWEDGE': Chem.rdchem.BondDir.BEGINWEDGE,
|
310 |
+
'BEGINDASH': Chem.rdchem.BondDir.BEGINDASH,
|
311 |
+
'ENDDOWNRIGHT': Chem.rdchem.BondDir.ENDDOWNRIGHT,}
|
312 |
+
|
313 |
+
|
314 |
+
|
315 |
+
try:
|
316 |
+
# add nodes
|
317 |
+
s10=[str(x) for x in range(10)]
|
318 |
+
for idx, node in enumerate(atoms):#NOTE no formal charge will be X0 here
|
319 |
+
# node=node.split(' ')
|
320 |
+
# if ('0' in node) or ('1' in node):
|
321 |
+
if 'other' in node:
|
322 |
+
a='*'
|
323 |
+
if '-' in node or '+' in node:
|
324 |
+
fc = int(node[-2:])
|
325 |
+
else:
|
326 |
+
fc = int(node[-1])
|
327 |
+
elif node[-1] in s10:
|
328 |
+
if '-' in node or '+' in node:
|
329 |
+
a = node[:-2]
|
330 |
+
fc = int(node[-2:])
|
331 |
+
else:
|
332 |
+
a = node[:-1]
|
333 |
+
fc = int(node[-1])
|
334 |
+
elif node[-1]=='+':
|
335 |
+
a = node[:-1]
|
336 |
+
fc = 1
|
337 |
+
elif node[-1]=='-':
|
338 |
+
a = node[:-1]
|
339 |
+
fc = -1
|
340 |
+
|
341 |
+
# elif ('-1' in node) or ('-' in node):
|
342 |
+
# a = node[:-2]
|
343 |
+
# fc = int(node[-2])
|
344 |
+
else:
|
345 |
+
a = node
|
346 |
+
fc = 0
|
347 |
+
|
348 |
+
ad = Chem.Atom(a)
|
349 |
+
ad.SetFormalCharge(fc)
|
350 |
+
|
351 |
+
atom_idx = mol.AddAtom(ad)
|
352 |
+
nodes_idx[idx] = atom_idx
|
353 |
+
|
354 |
+
# add bonds
|
355 |
+
existing_bonds = set()
|
356 |
+
for idx_1, idx_2, bond_type, bond_dir, score in bonds:
|
357 |
+
if (idx_1 in nodes_idx) and (idx_2 in nodes_idx):
|
358 |
+
if (idx_1, idx_2) not in existing_bonds and (idx_2, idx_1) not in existing_bonds:
|
359 |
+
try:
|
360 |
+
mol.AddBond(nodes_idx[idx_1], nodes_idx[idx_2], bond_types[bond_type])
|
361 |
+
except Exception as e:
|
362 |
+
print([idx_1, idx_2, bond_type, bond_dir, score],f"erro @add bonds ")
|
363 |
+
print(f"erro@add existing_bonds: {e}\n{bonds}")
|
364 |
+
continue
|
365 |
+
existing_bonds.add((idx_1, idx_2))
|
366 |
+
|
367 |
+
if Chem.MolFromSmiles(Chem.MolToSmiles(mol.GetMol())):
|
368 |
+
prev_mol = copy.deepcopy(mol)
|
369 |
+
else:
|
370 |
+
mol = copy.deepcopy(prev_mol)
|
371 |
+
|
372 |
+
|
373 |
+
chiral_centers = Chem.FindMolChiralCenters(
|
374 |
+
mol, includeUnassigned=True, includeCIP=False, useLegacyImplementation=False)
|
375 |
+
chiral_center_ids = [idx for idx, _ in chiral_centers]
|
376 |
+
|
377 |
+
for id in chiral_center_ids:
|
378 |
+
for index, tup in enumerate(bonds):
|
379 |
+
if id == tup[1]:
|
380 |
+
new_tup = tuple([tup[1], tup[0], tup[2], tup[3], tup[4]])#idx_1, idx_2, bond_type, bond_dir, score
|
381 |
+
bonds[index] = new_tup
|
382 |
+
mol.RemoveBond(int(tup[0]), int(tup[1]))
|
383 |
+
try:
|
384 |
+
mol.AddBond(int(tup[1]), int(tup[0]), bond_types[tup[2]])
|
385 |
+
except Exception as e:
|
386 |
+
print( index, tup, id)
|
387 |
+
print(f"bonds: {bonds}")
|
388 |
+
print(f"erro@chiral_center_ids: {e}")
|
389 |
+
mol = mol.GetMol()
|
390 |
+
|
391 |
+
# if 'S0' in atoms:
|
392 |
+
# bonds_ = [[row[0], row[1], row[3]] for row in bonds]
|
393 |
+
|
394 |
+
# n_atoms=len(atoms)
|
395 |
+
# for i in chiral_center_ids:
|
396 |
+
# for j in range(n_atoms):
|
397 |
+
|
398 |
+
# if [i,j,'BEGINWEDGE'] in bonds_:
|
399 |
+
# mol.GetBondBetweenAtoms(i, j).SetBondDir(bond_dirs['BEGINWEDGE'])
|
400 |
+
# elif [i,j,'BEGINDASH'] in bonds_:
|
401 |
+
# mol.GetBondBetweenAtoms(i, j).SetBondDir(bond_dirs['BEGINDASH'])
|
402 |
+
|
403 |
+
# Chem.SanitizeMol(mol)
|
404 |
+
# AllChem.Compute2DCoords(mol)
|
405 |
+
# Chem.AssignChiralTypesFromBondDirs(mol)
|
406 |
+
# Chem.AssignStereochemistry(mol, force=True, cleanIt=True)
|
407 |
+
|
408 |
+
# else:
|
409 |
+
|
410 |
+
mol.RemoveAllConformers()
|
411 |
+
conf = Chem.Conformer(mol.GetNumAtoms())
|
412 |
+
conf.Set3D(True)
|
413 |
+
for i, (x, y, z) in enumerate(coords):
|
414 |
+
conf.SetAtomPosition(i, (x, y, z))
|
415 |
+
mol.AddConformer(conf)
|
416 |
+
# Chem.SanitizeMol(mol)
|
417 |
+
Chem.AssignStereochemistryFrom3D(mol)
|
418 |
+
|
419 |
+
bonds_ = [[row[0], row[1], row[3]] for row in bonds]
|
420 |
+
|
421 |
+
n_atoms=len(atoms)
|
422 |
+
for i in chiral_center_ids:
|
423 |
+
for j in range(n_atoms):
|
424 |
+
if [i,j,'BEGINWEDGE'] in bonds_:
|
425 |
+
mol.GetBondBetweenAtoms(i, j).SetBondDir(bond_dirs['BEGINWEDGE'])
|
426 |
+
elif [i,j,'BEGINDASH'] in bonds_:
|
427 |
+
mol.GetBondBetweenAtoms(i, j).SetBondDir(bond_dirs['BEGINDASH'])
|
428 |
+
|
429 |
+
Chem.SanitizeMol(mol)
|
430 |
+
Chem.DetectBondStereochemistry(mol)
|
431 |
+
Chem.AssignChiralTypesFromBondDirs(mol)
|
432 |
+
Chem.AssignStereochemistry(mol)
|
433 |
+
|
434 |
+
# mol.Debug()
|
435 |
+
# print('debuged')
|
436 |
+
|
437 |
+
# drawing out
|
438 |
+
# opts = Draw.MolDrawOptions()
|
439 |
+
# opts.addAtomIndices = False
|
440 |
+
# opts.addStereoAnnotation = False
|
441 |
+
# img = Draw.MolToImage(mol, options=opts,size=(1000, 1000))
|
442 |
+
# img.save('tttttttttttttafter.png')
|
443 |
+
# Chem.Draw.MolToImageFile(mol, 'tttttttttttttbefore.png')
|
444 |
+
# img.save('/home/jovyan/rt-detr/output/test/after.png')
|
445 |
+
# Chem.Draw.MolToImageFile(mol, '/home/jovyan/rt-detr/output/test/before.png')
|
446 |
+
|
447 |
+
smiles=Chem.MolToSmiles(mol)
|
448 |
+
return smiles,mol
|
449 |
+
|
450 |
+
|
451 |
+
except Chem.rdchem.AtomValenceException as e:
|
452 |
+
print(f"捕获到 AtomValenceException 异常@@{e}")
|
453 |
+
|
454 |
+
# except Chem.rdchem.AtomValenceException as e:
|
455 |
+
# print(f"捕获到 AtomValenceException 异常@@{e}")
|
456 |
+
|
457 |
+
except Exception as e:
|
458 |
+
print(f"捕获到 异常@@{e}")
|
459 |
+
print(f"Error@@node {node} atom@@ {a} \n")
|
460 |
+
print(atoms,idx,atoms[idx])
|
461 |
+
|
462 |
+
|
463 |
+
|
464 |
+
|
465 |
+
def mol_from_graph_without_chiral(atoms, bonds):
|
466 |
+
|
467 |
+
mol = RWMol()
|
468 |
+
nodes_idx = {}
|
469 |
+
|
470 |
+
for i in range(len(bonds)):
|
471 |
+
idx_1, idx_2, bond_type, bond_dir, score = bonds[i]
|
472 |
+
if bond_type in ['-', 'NONE', 'ENDUPRIGHT', 'BEGINWEDGE', 'BEGINDASH', 'ENDDOWNRIGHT']:
|
473 |
+
bonds[i] = (idx_1, idx_2, 'SINGLE', bond_dir, score)
|
474 |
+
elif bond_type == '=':
|
475 |
+
bonds[i] = (idx_1, idx_2, 'DOUBLE', bond_dir, score)
|
476 |
+
elif bond_type == '#':
|
477 |
+
bonds[i] = (idx_1, idx_2, 'TRIPLE', bond_dir, score)
|
478 |
+
|
479 |
+
|
480 |
+
bond_types = {'SINGLE': Chem.rdchem.BondType.SINGLE,
|
481 |
+
'DOUBLE': Chem.rdchem.BondType.DOUBLE,
|
482 |
+
'TRIPLE': Chem.rdchem.BondType.TRIPLE,
|
483 |
+
'AROMATIC': Chem.rdchem.BondType.AROMATIC}
|
484 |
+
|
485 |
+
|
486 |
+
try:
|
487 |
+
# add nodes
|
488 |
+
for idx, node in enumerate(atoms):
|
489 |
+
if ('0' in node) or ('1' in node):
|
490 |
+
a = node[:-1]
|
491 |
+
fc = int(node[-1])
|
492 |
+
if '-1' in node:
|
493 |
+
a = node[:-2]
|
494 |
+
fc = -1
|
495 |
+
|
496 |
+
a = Chem.Atom(a)
|
497 |
+
a.SetFormalCharge(fc)
|
498 |
+
|
499 |
+
atom_idx = mol.AddAtom(a)
|
500 |
+
nodes_idx[idx] = atom_idx
|
501 |
+
|
502 |
+
# add bonds
|
503 |
+
existing_bonds = set()
|
504 |
+
for idx_1, idx_2, bond_type, bond_dir, score in bonds:
|
505 |
+
if (idx_1 in nodes_idx) and (idx_2 in nodes_idx):
|
506 |
+
if (idx_1, idx_2) not in existing_bonds and (idx_2, idx_1) not in existing_bonds:
|
507 |
+
try:
|
508 |
+
mol.AddBond(nodes_idx[idx_1], nodes_idx[idx_2], bond_types[bond_type])
|
509 |
+
except:
|
510 |
+
continue
|
511 |
+
existing_bonds.add((idx_1, idx_2))
|
512 |
+
if Chem.MolFromSmiles(Chem.MolToSmiles(mol.GetMol())):
|
513 |
+
prev_mol = copy.deepcopy(mol)
|
514 |
+
else:
|
515 |
+
mol = copy.deepcopy(prev_mol)
|
516 |
+
|
517 |
+
mol = mol.GetMol()
|
518 |
+
mol = Chem.MolFromSmiles(Chem.MolToSmiles(mol))
|
519 |
+
return Chem.MolToSmiles(mol)
|
520 |
+
|
521 |
+
except Chem.rdchem.AtomValenceException as e:
|
522 |
+
print("捕获到 AtomValenceException 异常")
|
523 |
+
|
524 |
+
|
525 |
+
|
526 |
+
|
527 |
+
|