Spaces:
Sleeping
Sleeping
| from __future__ import annotations | |
| import time | |
| from pathlib import Path | |
| import librosa | |
| import soundfile as sf | |
| import torch | |
| from modules.asr import get_asr_model | |
| from modules.llm import get_llm_model | |
| from modules.svs import get_svs_model | |
| from evaluation.svs_eval import load_evaluators, run_evaluation | |
| from modules.melody import MelodyController | |
| from modules.utils.text_normalize import clean_llm_output | |
| class SingingDialoguePipeline: | |
| def __init__(self, config: dict): | |
| if "device" in config: | |
| self.device = config["device"] | |
| else: | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| self.cache_dir = config["cache_dir"] | |
| self.asr = get_asr_model( | |
| config["asr_model"], device=self.device, cache_dir=self.cache_dir | |
| ) | |
| self.llm = get_llm_model( | |
| config["llm_model"], device=self.device, cache_dir=self.cache_dir | |
| ) | |
| self.svs = get_svs_model( | |
| config["svs_model"], device=self.device, cache_dir=self.cache_dir | |
| ) | |
| self.melody_controller = MelodyController( | |
| config["melody_source"], self.cache_dir | |
| ) | |
| self.max_sentences = config.get("max_sentences", 2) | |
| self.track_latency = config.get("track_latency", False) | |
| self.evaluators = load_evaluators(config.get("evaluators", {}).get("svs", [])) | |
| def set_asr_model(self, asr_model: str): | |
| self.asr = get_asr_model( | |
| asr_model, device=self.device, cache_dir=self.cache_dir | |
| ) | |
| def set_llm_model(self, llm_model: str): | |
| self.llm = get_llm_model( | |
| llm_model, device=self.device, cache_dir=self.cache_dir | |
| ) | |
| def set_svs_model(self, svs_model: str): | |
| self.svs = get_svs_model( | |
| svs_model, device=self.device, cache_dir=self.cache_dir | |
| ) | |
| def set_melody_controller(self, melody_source: str): | |
| self.melody_controller = MelodyController(melody_source, self.cache_dir) | |
| def run( | |
| self, | |
| audio_path, | |
| language, | |
| prompt_template, | |
| speaker, | |
| output_audio_path: Path | str = None, | |
| max_new_tokens=50, | |
| ): | |
| if self.track_latency: | |
| asr_start_time = time.time() | |
| audio_array, audio_sample_rate = librosa.load(audio_path, sr=16000) | |
| asr_result = self.asr.transcribe( | |
| audio_array, audio_sample_rate=audio_sample_rate, language=language | |
| ) | |
| if self.track_latency: | |
| asr_end_time = time.time() | |
| asr_latency = asr_end_time - asr_start_time | |
| melody_prompt = self.melody_controller.get_melody_constraints() | |
| prompt = prompt_template.format(melody_prompt, asr_result) | |
| if self.track_latency: | |
| llm_start_time = time.time() | |
| output = self.llm.generate(prompt, max_new_tokens=max_new_tokens) | |
| if self.track_latency: | |
| llm_end_time = time.time() | |
| llm_latency = llm_end_time - llm_start_time | |
| llm_response = clean_llm_output( | |
| output, language=language, max_sentences=self.max_sentences | |
| ) | |
| score = self.melody_controller.generate_score(llm_response, language) | |
| if self.track_latency: | |
| svs_start_time = time.time() | |
| singing_audio, sample_rate = self.svs.synthesize( | |
| score, language=language, speaker=speaker | |
| ) | |
| if self.track_latency: | |
| svs_end_time = time.time() | |
| svs_latency = svs_end_time - svs_start_time | |
| results = { | |
| "asr_text": asr_result, | |
| "llm_text": llm_response, | |
| "svs_audio": (sample_rate, singing_audio), | |
| } | |
| if output_audio_path: | |
| Path(output_audio_path).parent.mkdir(parents=True, exist_ok=True) | |
| sf.write(output_audio_path, singing_audio, sample_rate) | |
| results["output_audio_path"] = output_audio_path | |
| if self.track_latency: | |
| results["metrics"] = { | |
| "asr_latency": asr_latency, | |
| "llm_latency": llm_latency, | |
| "svs_latency": svs_latency, | |
| } | |
| return results | |
| def evaluate(self, audio_path): | |
| return run_evaluation(audio_path, self.evaluators) | |