Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
import os
|
2 |
-
import inspect
|
3 |
import chainlit as cl
|
4 |
import PyPDF2
|
5 |
import httpx
|
6 |
import requests
|
7 |
-
from typing import List, Dict, Any
|
|
|
8 |
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
from langchain.vectorstores import Chroma
|
@@ -15,9 +15,9 @@ from langchain.prompts.chat import (
|
|
15 |
HumanMessagePromptTemplate,
|
16 |
)
|
17 |
|
18 |
-
# Configuraci贸n Deepseek
|
19 |
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
|
20 |
-
EMBEDDINGS_URL = "https://api.deepseek.com/v1/embeddings"
|
21 |
CHAT_URL = "https://api.deepseek.com/v1/chat/completions"
|
22 |
|
23 |
class DeepseekEmbeddings:
|
@@ -30,19 +30,17 @@ class DeepseekEmbeddings:
|
|
30 |
"Content-Type": "application/json"
|
31 |
}
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
raise ValueError(f"Error en embeddings: {response.text}")
|
45 |
-
return embeddings
|
46 |
|
47 |
class DeepseekChat:
|
48 |
def __init__(self, api_key: str):
|
@@ -68,31 +66,24 @@ class DeepseekChat:
|
|
68 |
return response.json()['choices'][0]['message']['content']
|
69 |
raise ValueError(f"Error en el chat: {response.text}")
|
70 |
|
71 |
-
system_template = """
|
72 |
-
1.
|
73 |
-
2.
|
74 |
-
3.
|
75 |
-
4.
|
76 |
-
5. Identificaci贸n de relaciones impl铆citas
|
77 |
-
|
78 |
-
Incluye siempre:
|
79 |
-
- Conclusiones fundamentadas
|
80 |
-
- Evaluaci贸n de consistencia entre documentos
|
81 |
-
- Posibles implicaciones pr谩cticas
|
82 |
-
- FUENTES utilizadas (m谩ximo 3 relevantes)
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
|
90 |
-
Contexto:
|
91 |
{summaries}"""
|
92 |
|
93 |
messages = [
|
94 |
SystemMessagePromptTemplate.from_template(system_template),
|
95 |
-
HumanMessagePromptTemplate.from_template("Pregunta
|
96 |
]
|
97 |
prompt = ChatPromptTemplate.from_messages(messages)
|
98 |
|
@@ -100,91 +91,103 @@ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20
|
|
100 |
|
101 |
@cl.on_chat_start
|
102 |
async def on_chat_start():
|
103 |
-
await cl.Message(content="Bienvenido al
|
104 |
|
105 |
pdf_paths = [
|
106 |
-
|
107 |
-
|
108 |
]
|
109 |
|
110 |
all_texts = []
|
111 |
all_metadatas = []
|
112 |
|
113 |
for path in pdf_paths:
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
140 |
|
141 |
cl.user_session.set("chain", chain)
|
142 |
cl.user_session.set("metadatas", all_metadatas)
|
143 |
cl.user_session.set("texts", all_texts)
|
144 |
|
145 |
-
await cl.Message(content="Sistema listo. Puedes
|
146 |
|
147 |
@cl.on_message
|
148 |
async def main(message: cl.Message):
|
149 |
query = message.content
|
150 |
chain = cl.user_session.get("chain")
|
151 |
-
cb = cl.AsyncLangchainCallbackHandler()
|
152 |
|
153 |
try:
|
154 |
-
res = await chain.acall(query
|
155 |
answer = res["answer"]
|
156 |
-
sources = res.get("sources", "").split(",")
|
157 |
|
|
|
|
|
|
|
|
|
|
|
158 |
metadatas = cl.user_session.get("metadatas")
|
159 |
texts = cl.user_session.get("texts")
|
160 |
|
161 |
-
|
162 |
unique_sources = set()
|
163 |
-
|
|
|
164 |
src = src.strip()
|
165 |
-
if
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
name=f"{src} (P谩gina {metadatas[i]['page']})"
|
174 |
-
) for i in matches[:2] # Mostrar m谩ximo 2 fragmentos por fuente
|
175 |
-
])
|
176 |
|
177 |
if unique_sources:
|
178 |
-
|
179 |
-
answer += "\n\nFragmentos relevantes:"
|
180 |
|
181 |
await cl.Message(
|
182 |
-
content=
|
183 |
-
elements=
|
|
|
184 |
).send()
|
185 |
|
186 |
except Exception as e:
|
187 |
-
await cl.Message(content=f"Error
|
188 |
|
189 |
if __name__ == "__main__":
|
190 |
from chainlit.cli import run_chainlit
|
|
|
1 |
import os
|
|
|
2 |
import chainlit as cl
|
3 |
import PyPDF2
|
4 |
import httpx
|
5 |
import requests
|
6 |
+
from typing import List, Dict, Any
|
7 |
+
from markdown import markdown
|
8 |
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
from langchain.vectorstores import Chroma
|
|
|
15 |
HumanMessagePromptTemplate,
|
16 |
)
|
17 |
|
18 |
+
# Configuraci贸n Deepseek Actualizada
|
19 |
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
|
20 |
+
EMBEDDINGS_URL = "https://api.deepseek.com/v1/embeddings" # URL corregida
|
21 |
CHAT_URL = "https://api.deepseek.com/v1/chat/completions"
|
22 |
|
23 |
class DeepseekEmbeddings:
|
|
|
30 |
"Content-Type": "application/json"
|
31 |
}
|
32 |
|
33 |
+
data = {
|
34 |
+
"input": texts,
|
35 |
+
"model": "deepseek-embedding", # Modelo actualizado
|
36 |
+
"encoding_type": "float"
|
37 |
+
}
|
38 |
+
|
39 |
+
response = requests.post(EMBEDDINGS_URL, json=data, headers=headers)
|
40 |
+
if response.status_code == 200:
|
41 |
+
return [item["embedding"] for item in response.json()["data"]]
|
42 |
+
else:
|
43 |
+
raise ValueError(f"Error en embeddings: {response.text}")
|
|
|
|
|
44 |
|
45 |
class DeepseekChat:
|
46 |
def __init__(self, api_key: str):
|
|
|
66 |
return response.json()['choices'][0]['message']['content']
|
67 |
raise ValueError(f"Error en el chat: {response.text}")
|
68 |
|
69 |
+
system_template = """Eres un experto en gesti贸n de conflictos con habilidades avanzadas de an谩lisis. Puedes:
|
70 |
+
1. Responder preguntas generales y t茅cnicas
|
71 |
+
2. Generar tablas comparativas en markdown
|
72 |
+
3. Analizar documentos en profundidad
|
73 |
+
4. Combinar m煤ltiples fuentes de informaci贸n
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
Instrucciones:
|
76 |
+
- Usa formato markdown para tablas y listas
|
77 |
+
- Para preguntas t茅cnicas, usa los documentos como fuente principal
|
78 |
+
- Incluye siempre fuentes relevantes
|
79 |
+
- Si no hay informaci贸n suficiente, indica qu茅 aspectos no est谩n cubiertos en los documentos
|
80 |
|
81 |
+
Contexto documental:
|
82 |
{summaries}"""
|
83 |
|
84 |
messages = [
|
85 |
SystemMessagePromptTemplate.from_template(system_template),
|
86 |
+
HumanMessagePromptTemplate.from_template("**Pregunta:** {question}\n**Respuesta (usar markdown si es necesario):**")
|
87 |
]
|
88 |
prompt = ChatPromptTemplate.from_messages(messages)
|
89 |
|
|
|
91 |
|
92 |
@cl.on_chat_start
|
93 |
async def on_chat_start():
|
94 |
+
await cl.Message(content="Bienvenido al sistema experto en gesti贸n de conflictos").send()
|
95 |
|
96 |
pdf_paths = [
|
97 |
+
"gestion de conflictos.pdf",
|
98 |
+
"Managing Conflict with Your Boss .pdf"
|
99 |
]
|
100 |
|
101 |
all_texts = []
|
102 |
all_metadatas = []
|
103 |
|
104 |
for path in pdf_paths:
|
105 |
+
try:
|
106 |
+
base_name = os.path.basename(path)
|
107 |
+
with open(path, "rb") as f:
|
108 |
+
reader = PyPDF2.PdfReader(f)
|
109 |
+
pdf_text = " ".join([page.extract_text() or "" for page in reader.pages])
|
110 |
+
chunks = text_splitter.split_text(pdf_text)
|
111 |
+
all_texts.extend(chunks)
|
112 |
+
all_metadatas.extend([{
|
113 |
+
"source": base_name,
|
114 |
+
"page": (i // 3) + 1
|
115 |
+
} for i, _ in enumerate(chunks)])
|
116 |
+
except Exception as e:
|
117 |
+
await cl.Message(content=f"Error cargando {path}: {str(e)}").send()
|
118 |
+
return
|
119 |
|
120 |
+
try:
|
121 |
+
embeddings = DeepseekEmbeddings(DEEPSEEK_API_KEY)
|
122 |
+
docsearch = await cl.make_async(Chroma.from_texts)(
|
123 |
+
all_texts,
|
124 |
+
embeddings,
|
125 |
+
metadatas=all_metadatas
|
126 |
+
)
|
127 |
+
except Exception as e:
|
128 |
+
await cl.Message(content=f"Error creando embeddings: {str(e)}").send()
|
129 |
+
return
|
130 |
|
131 |
+
try:
|
132 |
+
chain = RetrievalQAWithSourcesChain.from_chain_type(
|
133 |
+
DeepseekChat(DEEPSEEK_API_KEY),
|
134 |
+
chain_type="stuff",
|
135 |
+
retriever=docsearch.as_retriever(search_kwargs={"k": 3}),
|
136 |
+
return_source_documents=True,
|
137 |
+
chain_type_kwargs={"prompt": prompt}
|
138 |
+
)
|
139 |
+
except Exception as e:
|
140 |
+
await cl.Message(content=f"Error configurando la cadena: {str(e)}").send()
|
141 |
+
return
|
142 |
|
143 |
cl.user_session.set("chain", chain)
|
144 |
cl.user_session.set("metadatas", all_metadatas)
|
145 |
cl.user_session.set("texts", all_texts)
|
146 |
|
147 |
+
await cl.Message(content="Sistema listo. Puedes hacer preguntas o pedir an谩lisis con tablas").send()
|
148 |
|
149 |
@cl.on_message
|
150 |
async def main(message: cl.Message):
|
151 |
query = message.content
|
152 |
chain = cl.user_session.get("chain")
|
|
|
153 |
|
154 |
try:
|
155 |
+
res = await chain.acall(query)
|
156 |
answer = res["answer"]
|
|
|
157 |
|
158 |
+
# Formatear markdown
|
159 |
+
formatted_answer = markdown(answer)
|
160 |
+
|
161 |
+
# Manejo de fuentes
|
162 |
+
sources = res.get("sources", "")
|
163 |
metadatas = cl.user_session.get("metadatas")
|
164 |
texts = cl.user_session.get("texts")
|
165 |
|
166 |
+
source_elements = []
|
167 |
unique_sources = set()
|
168 |
+
|
169 |
+
for src in sources.split(","):
|
170 |
src = src.strip()
|
171 |
+
if src:
|
172 |
+
matches = [i for i, m in enumerate(metadatas) if m["source"] == src]
|
173 |
+
if matches:
|
174 |
+
unique_sources.add(src)
|
175 |
+
source_elements.append(cl.Text(
|
176 |
+
content=texts[matches[0]],
|
177 |
+
name=f"{src} (P谩gina {metadatas[matches[0]]['page']})"
|
178 |
+
))
|
|
|
|
|
|
|
179 |
|
180 |
if unique_sources:
|
181 |
+
formatted_answer += f"\n\n**Fuentes verificadas:** {', '.join(unique_sources)}"
|
|
|
182 |
|
183 |
await cl.Message(
|
184 |
+
content=formatted_answer,
|
185 |
+
elements=source_elements[:3],
|
186 |
+
language="markdown"
|
187 |
).send()
|
188 |
|
189 |
except Exception as e:
|
190 |
+
await cl.Message(content=f"Error procesando la consulta: {str(e)}").send()
|
191 |
|
192 |
if __name__ == "__main__":
|
193 |
from chainlit.cli import run_chainlit
|