Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,106 +1,160 @@
|
|
1 |
-
import
|
|
|
2 |
import chainlit as cl
|
3 |
import PyPDF2
|
4 |
-
import numpy as np
|
5 |
-
from sentence_transformers import SentenceTransformer
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
for word in words:
|
19 |
-
current_chunk.append(word)
|
20 |
-
if len(current_chunk) >= max_words:
|
21 |
-
chunks.append(" ".join(current_chunk))
|
22 |
-
current_chunk = []
|
23 |
-
if current_chunk:
|
24 |
-
chunks.append(" ".join(current_chunk))
|
25 |
-
return chunks
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
doc_chunks.append({"doc": doc_name, "text": chunk})
|
43 |
-
return doc_chunks
|
44 |
|
45 |
-
#
|
46 |
-
|
47 |
-
documents = load_pdfs(pdf_files)
|
48 |
|
49 |
-
#
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
embeddings = embedder.encode(texts, convert_to_numpy=True)
|
54 |
-
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
|
55 |
-
embeddings_norm = embeddings / norms
|
56 |
-
return embeddings_norm
|
57 |
|
58 |
-
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
query_vec = embedder.encode(query, convert_to_numpy=True)
|
63 |
-
query_vec = query_vec / np.linalg.norm(query_vec)
|
64 |
-
sims = np.dot(doc_embeddings, query_vec)
|
65 |
-
top_idx = np.argsort(sims)[::-1][:top_k]
|
66 |
-
top_chunks = [doc_chunks[i] for i in top_idx]
|
67 |
-
return top_chunks
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
system_message = {
|
76 |
-
"role": "system",
|
77 |
-
"content": (
|
78 |
-
"Eres un asistente experto que responde de forma profunda y anal铆tica. "
|
79 |
-
"Tienes acceso a informaci贸n de varios documentos proporcionados. "
|
80 |
-
"Usa el contenido dado como contexto, pero no te limites a copiarlo: "
|
81 |
-
"responde de forma argumentada, sintetizando la informaci贸n y aportando visi贸n cr铆tica."
|
82 |
-
)
|
83 |
-
}
|
84 |
-
user_message = {
|
85 |
-
"role": "user",
|
86 |
-
"content": f"Contexto:\n{context_text}\nPregunta: {question}"
|
87 |
-
}
|
88 |
-
response = openai.ChatCompletion.create(
|
89 |
-
model=MODEL_NAME,
|
90 |
-
messages=[system_message, user_message],
|
91 |
-
temperature=0.7
|
92 |
-
)
|
93 |
-
answer = response["choices"][0]["message"]["content"]
|
94 |
-
return answer
|
95 |
|
96 |
-
#
|
97 |
@cl.on_chat_start
|
98 |
async def on_chat_start():
|
99 |
-
await cl.Message(content="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
|
|
101 |
@cl.on_message
|
102 |
-
async def
|
103 |
-
query = message.content
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import inspect
|
3 |
import chainlit as cl
|
4 |
import PyPDF2
|
|
|
|
|
5 |
|
6 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain.vectorstores import Chroma
|
9 |
+
from langchain.chains import RetrievalQAWithSourcesChain
|
10 |
+
from langchain.chat_models import ChatOpenAI
|
11 |
+
from langchain.prompts.chat import (
|
12 |
+
ChatPromptTemplate,
|
13 |
+
SystemMessagePromptTemplate,
|
14 |
+
HumanMessagePromptTemplate,
|
15 |
+
)
|
16 |
|
17 |
+
# Clase personalizada que cumple con la nueva interfaz de EmbeddingFunction de Chroma
|
18 |
+
class CustomOpenAIEmbeddings(OpenAIEmbeddings):
|
19 |
+
def __call__(self, input):
|
20 |
+
# Llama al m茅todo embed_documents para generar las embeddings a partir de una lista de textos
|
21 |
+
return self.embed_documents(input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# Forzamos la firma de __call__ para que tenga exactamente ("self", "input")
|
24 |
+
CustomOpenAIEmbeddings.__call__.__signature__ = inspect.Signature(
|
25 |
+
parameters=[
|
26 |
+
inspect.Parameter("self", inspect.Parameter.POSITIONAL_OR_KEYWORD),
|
27 |
+
inspect.Parameter("input", inspect.Parameter.POSITIONAL_OR_KEYWORD)
|
28 |
+
]
|
29 |
+
)
|
30 |
+
|
31 |
+
# --- CONFIGURACI脫N ---
|
32 |
+
# Obtenemos la API key de OpenAI desde las variables de entorno
|
33 |
+
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
34 |
+
if not OPENAI_API_KEY:
|
35 |
+
raise ValueError(
|
36 |
+
"No se encontr贸 la variable de entorno 'OPENAI_API_KEY'. Def铆nela en tu entorno o en los secrets."
|
37 |
+
)
|
|
|
|
|
38 |
|
39 |
+
# Configuraci贸n del text splitter (modo in-memory, sin persistencia)
|
40 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
|
|
41 |
|
42 |
+
# Plantilla del sistema para el prompt (en espa帽ol)
|
43 |
+
system_template = """Utiliza las siguientes piezas de contexto para responder la pregunta del usuario de manera breve y concisa.
|
44 |
+
Si no sabes la respuesta, simplemente di que no lo sabes, no intentes inventarla.
|
45 |
+
SIEMPRE incluye una parte "FUENTES" en tu respuesta, donde se indique el documento del cual obtuviste la informaci贸n.
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
Ejemplo:
|
48 |
+
La respuesta es foo
|
49 |
+
FUENTES: xyz
|
50 |
|
51 |
+
----------------
|
52 |
+
{summaries}"""
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
messages = [
|
55 |
+
SystemMessagePromptTemplate.from_template(system_template),
|
56 |
+
HumanMessagePromptTemplate.from_template("{question}")
|
57 |
+
]
|
58 |
+
prompt = ChatPromptTemplate.from_messages(messages)
|
59 |
+
chain_type_kwargs = {"prompt": prompt}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
# --- EVENTO AL INICIAR EL CHAT ---
|
62 |
@cl.on_chat_start
|
63 |
async def on_chat_start():
|
64 |
+
await cl.Message(content="Bienvenido a la gestion de conflictos espero les agrade William , German , Carlos ").send()
|
65 |
+
|
66 |
+
# Rutas de los PDFs (aseg煤rate de que est茅n en el directorio actual o ajusta las rutas)
|
67 |
+
pdf_paths = [
|
68 |
+
"gestios de conflictos.pdf",
|
69 |
+
"Managing Conflict with Your Boss .pdf"
|
70 |
+
]
|
71 |
+
|
72 |
+
all_texts = []
|
73 |
+
all_metadatas = []
|
74 |
+
|
75 |
+
# Procesar cada PDF: extraer texto, dividirlo en fragmentos y asignar metadata
|
76 |
+
for path in pdf_paths:
|
77 |
+
base_name = os.path.basename(path)
|
78 |
+
with open(path, "rb") as f:
|
79 |
+
reader = PyPDF2.PdfReader(f)
|
80 |
+
pdf_text = ""
|
81 |
+
for page in reader.pages:
|
82 |
+
text = page.extract_text()
|
83 |
+
if text:
|
84 |
+
pdf_text += text
|
85 |
+
chunks = text_splitter.split_text(pdf_text)
|
86 |
+
all_texts.extend(chunks)
|
87 |
+
all_metadatas.extend([{"source": base_name} for _ in chunks])
|
88 |
+
|
89 |
+
# Crear la base vectorial usando nuestra clase personalizada de embeddings
|
90 |
+
# Al no especificar persist_directory se utiliza el modo in-memory, evitando la necesidad de configurar un tenant
|
91 |
+
embeddings = CustomOpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
|
92 |
+
docsearch = await cl.make_async(Chroma.from_texts)(
|
93 |
+
all_texts,
|
94 |
+
embeddings,
|
95 |
+
metadatas=all_metadatas,
|
96 |
+
persist_directory="./chroma_db" # Directorio de persistencia
|
97 |
+
)
|
98 |
+
|
99 |
+
# Crear la cadena de QA utilizando ChatOpenAI
|
100 |
+
chain = RetrievalQAWithSourcesChain.from_chain_type(
|
101 |
+
ChatOpenAI(temperature=0, openai_api_key=OPENAI_API_KEY, max_tokens=400),
|
102 |
+
chain_type="stuff",
|
103 |
+
retriever=docsearch.as_retriever(),
|
104 |
+
chain_type_kwargs=chain_type_kwargs
|
105 |
+
)
|
106 |
+
|
107 |
+
# Guardar en la sesi贸n de usuario
|
108 |
+
cl.user_session.set("chain", chain)
|
109 |
+
cl.user_session.set("metadatas", all_metadatas)
|
110 |
+
cl.user_session.set("texts", all_texts)
|
111 |
+
|
112 |
+
await cl.Message(content="隆Listo! Ya puedes hacer tus preguntas de manera breve.").send()
|
113 |
|
114 |
+
# --- EVENTO AL RECIBIR UN MENSAJE DEL USUARIO ---
|
115 |
@cl.on_message
|
116 |
+
async def main(message: cl.Message):
|
117 |
+
query = message.content
|
118 |
+
chain = cl.user_session.get("chain")
|
119 |
+
cb = cl.AsyncLangchainCallbackHandler(
|
120 |
+
stream_final_answer=True,
|
121 |
+
answer_prefix_tokens=["FINAL", "ANSWER"]
|
122 |
+
)
|
123 |
+
cb.answer_reached = True
|
124 |
+
|
125 |
+
res = await chain.acall(query, callbacks=[cb])
|
126 |
+
|
127 |
+
answer = res["answer"]
|
128 |
+
sources = res["sources"].strip()
|
129 |
+
source_elements = []
|
130 |
+
|
131 |
+
metadatas = cl.user_session.get("metadatas")
|
132 |
+
all_sources = [m["source"] for m in metadatas]
|
133 |
+
texts = cl.user_session.get("texts")
|
134 |
+
|
135 |
+
if sources:
|
136 |
+
found_sources = []
|
137 |
+
for src in sources.split(","):
|
138 |
+
source_name = src.strip().replace(".", "")
|
139 |
+
try:
|
140 |
+
index = all_sources.index(source_name)
|
141 |
+
except ValueError:
|
142 |
+
continue
|
143 |
+
found_sources.append(source_name)
|
144 |
+
source_elements.append(cl.Text(content=texts[index], name=source_name))
|
145 |
+
if found_sources:
|
146 |
+
answer += f"\nFUENTES: {', '.join(found_sources)}"
|
147 |
+
else:
|
148 |
+
answer += "\nNo se encontraron fuentes."
|
149 |
+
|
150 |
+
if cb.has_streamed_final_answer:
|
151 |
+
cb.final_stream.elements = source_elements
|
152 |
+
await cb.final_stream.update()
|
153 |
+
else:
|
154 |
+
await cl.Message(content=answer, elements=source_elements).send()
|
155 |
+
|
156 |
+
# --- EJECUCI脫N ---
|
157 |
+
if __name__ == "__main__":
|
158 |
+
from chainlit.cli import run_chainlit
|
159 |
+
file_name = __file__ if '__file__' in globals() else "app.py"
|
160 |
+
run_chainlit(file_name)
|