Spaces:
Sleeping
Sleeping
Update embedding.py
Browse files- embedding.py +38 -146
embedding.py
CHANGED
@@ -1,168 +1,74 @@
|
|
1 |
-
|
2 |
-
import requests
|
3 |
-
from requests.exceptions import ReadTimeout, HTTPError
|
4 |
import logging
|
5 |
-
import json
|
6 |
import pandas as pd
|
7 |
-
import chromadb
|
8 |
-
from chromadb.utils import embedding_functions
|
9 |
-
import os
|
10 |
-
from dotenv import load_dotenv
|
11 |
-
import datetime
|
12 |
-
import uuid
|
13 |
-
from chroma_setup import initialize_client
|
14 |
import numpy as np
|
|
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
def get_embedding_model():
|
20 |
-
"""
|
21 |
-
Retorna una funci贸n de incrustaci贸n (embedding) basada en un modelo de HuggingFace.
|
22 |
-
Lee la clave de la API desde las variables de entorno.
|
23 |
-
"""
|
24 |
-
return embedding_functions.HuggingFaceEmbeddingFunction(
|
25 |
-
api_key=os.getenv("HUGGINGFACE_API_KEY"),
|
26 |
-
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
27 |
-
)
|
28 |
-
|
29 |
-
def embed_with_retry(embedding_model, text_chunk, max_retries=3, backoff_factor=2):
|
30 |
-
"""
|
31 |
-
Reintenta la generaci贸n de embeddings en caso de errores de timeout o l铆mites de la API.
|
32 |
-
|
33 |
-
Par谩metros:
|
34 |
-
-----------
|
35 |
-
embedding_model : objeto de funci贸n
|
36 |
-
Funci贸n de incrustaci贸n proporcionada por HuggingFaceEmbeddingFunction.
|
37 |
-
text_chunk : str
|
38 |
-
Texto a convertir en embedding.
|
39 |
-
max_retries : int
|
40 |
-
M谩ximo n煤mero de reintentos.
|
41 |
-
backoff_factor : int
|
42 |
-
Factor de espera exponencial antes de cada reintento.
|
43 |
-
|
44 |
-
Retorna:
|
45 |
-
--------
|
46 |
-
list[float]
|
47 |
-
Lista de valores flotantes que representan el embedding del texto.
|
48 |
-
"""
|
49 |
-
retries = 0
|
50 |
-
while retries < max_retries:
|
51 |
-
try:
|
52 |
-
embedding = embedding_model(input=text_chunk)
|
53 |
-
return embedding
|
54 |
-
except ReadTimeout as e:
|
55 |
-
logging.warning(f"Timeout (ReadTimeout): {e}. Reintentando... ({retries+1}/{max_retries})")
|
56 |
-
retries += 1
|
57 |
-
time.sleep(backoff_factor ** retries)
|
58 |
-
except HTTPError as e:
|
59 |
-
if e.response.status_code == 429: # L铆mite de peticiones
|
60 |
-
retry_after = int(e.response.headers.get("Retry-After", 60))
|
61 |
-
logging.warning(f"L铆mite de la API alcanzado. Reintentando en {retry_after} segundos...")
|
62 |
-
time.sleep(retry_after)
|
63 |
-
retries += 1
|
64 |
-
else:
|
65 |
-
raise e
|
66 |
-
|
67 |
-
raise Exception(f"No se pudo generar el embedding despu茅s de {max_retries} intentos.")
|
68 |
|
69 |
def embed_text_chunks(pages_and_chunks: list[dict]) -> pd.DataFrame:
|
70 |
"""
|
71 |
-
Genera embeddings para cada chunk de texto usando un modelo
|
72 |
-
|
73 |
-
|
74 |
-
Par谩metros:
|
75 |
-
-----------
|
76 |
-
pages_and_chunks : list[dict]
|
77 |
-
Lista de diccionarios que contienen chunks de texto y metadatos.
|
78 |
-
|
79 |
-
Retorna:
|
80 |
-
--------
|
81 |
-
pd.DataFrame
|
82 |
-
DataFrame que incluye cada chunk, sus metadatos y su embedding.
|
83 |
"""
|
84 |
-
embedding_model = get_embedding_model()
|
85 |
-
|
86 |
for item in pages_and_chunks:
|
|
|
87 |
try:
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
raise ValueError(f"Formato de embedding inesperado: {type(embedding)}")
|
94 |
-
|
95 |
item["embedding"] = embedding
|
|
|
96 |
except Exception as e:
|
97 |
-
logging.error(f"
|
98 |
item["embedding"] = None
|
99 |
|
100 |
return pd.DataFrame(pages_and_chunks)
|
101 |
|
102 |
def save_to_chroma_db(embeddings_df: pd.DataFrame, user_id: str, document_id: str):
|
103 |
"""
|
104 |
-
Guarda en
|
105 |
-
asign谩ndoles metadatos con un identificador combinado de usuario y documento.
|
106 |
-
|
107 |
-
Par谩metros:
|
108 |
-
-----------
|
109 |
-
embeddings_df : pd.DataFrame
|
110 |
-
DataFrame con los chunks y sus embeddings.
|
111 |
-
user_id : str
|
112 |
-
Identificador 煤nico de usuario.
|
113 |
-
document_id : str
|
114 |
-
Identificador 煤nico de documento.
|
115 |
"""
|
116 |
client = initialize_client()
|
|
|
|
|
117 |
collection = client.get_or_create_collection(name=f"text_embeddings_{user_id}")
|
118 |
|
119 |
combined_key = f"{user_id}_{document_id}"
|
120 |
|
121 |
ids = [f"{combined_key}_{i}" for i in range(len(embeddings_df))]
|
122 |
documents = embeddings_df["sentence_chunk"].tolist()
|
|
|
123 |
|
124 |
-
|
125 |
-
for
|
126 |
-
if
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
metadatas = [{"combined_key": combined_key} for _ in range(len(embeddings_df))]
|
132 |
-
print(f"Guardando documentos con combined_key: {combined_key}")
|
133 |
|
|
|
|
|
134 |
collection.add(
|
135 |
documents=documents,
|
136 |
embeddings=embeddings,
|
137 |
ids=ids,
|
138 |
-
metadatas=
|
139 |
)
|
140 |
|
141 |
-
def
|
142 |
-
|
143 |
-
Consulta la base de datos Chroma para recuperar los fragmentos de texto m谩s
|
144 |
-
relevantes basados en la consulta dada.
|
145 |
-
|
146 |
-
Par谩metros:
|
147 |
-
-----------
|
148 |
-
user_id : str
|
149 |
-
Identificador 煤nico de usuario.
|
150 |
-
document_id : str
|
151 |
-
Identificador 煤nico de documento.
|
152 |
-
query : str
|
153 |
-
Consulta que se desea realizar.
|
154 |
|
155 |
-
|
156 |
-
--------
|
157 |
-
str
|
158 |
-
Texto combinado de los documentos m谩s relevantes, o mensaje indicando
|
159 |
-
que no se encontraron documentos.
|
160 |
-
"""
|
161 |
client = initialize_client()
|
162 |
collection = client.get_collection(name=f"text_embeddings_{user_id}")
|
163 |
-
|
164 |
combined_key = f"{user_id}_{document_id}"
|
165 |
-
print(f"Consultando con combined_key: {combined_key}")
|
166 |
|
167 |
results = collection.query(
|
168 |
query_texts=[query],
|
@@ -170,24 +76,10 @@ def query_chroma_db(user_id: str, document_id: str, query: str):
|
|
170 |
where={"combined_key": combined_key},
|
171 |
)
|
172 |
|
173 |
-
print(f"Resultados de la consulta: {results}")
|
174 |
-
|
175 |
documents = results.get("documents", [])
|
176 |
-
if documents:
|
177 |
-
|
178 |
-
context = "\n\n".join(relevant_docs)
|
179 |
-
else:
|
180 |
-
context = "No se encontraron documentos"
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
"""
|
186 |
-
Genera un ID 煤nico de documento usando UUID.
|
187 |
-
|
188 |
-
Retorna:
|
189 |
-
--------
|
190 |
-
str
|
191 |
-
Cadena 煤nica que identifica el documento.
|
192 |
-
"""
|
193 |
-
return str(uuid.uuid4())
|
|
|
1 |
+
# embedding.py
|
|
|
|
|
2 |
import logging
|
|
|
3 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import numpy as np
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from chroma_setup import initialize_client
|
7 |
+
import uuid
|
8 |
|
9 |
+
# Creamos una instancia del modelo local de sentence-transformers
|
10 |
+
# (se descargar谩 y cachear谩 la primera vez que se ejecute)
|
11 |
+
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def embed_text_chunks(pages_and_chunks: list[dict]) -> pd.DataFrame:
|
14 |
"""
|
15 |
+
Genera embeddings para cada chunk de texto usando un modelo local
|
16 |
+
de sentence-transformers.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
"""
|
|
|
|
|
18 |
for item in pages_and_chunks:
|
19 |
+
text_chunk = item["sentence_chunk"]
|
20 |
try:
|
21 |
+
# encode() acepta una lista de strings y retorna una lista de embeddings (ndarray).
|
22 |
+
embedding_array = model.encode([text_chunk])
|
23 |
+
# Devuelve una matriz shape (1, 384) si es all-MiniLM-L6-v2, as铆 que tomamos el [0]
|
24 |
+
embedding = embedding_array[0].tolist()
|
25 |
+
# embedding ahora es una lista de floats
|
|
|
|
|
26 |
item["embedding"] = embedding
|
27 |
+
|
28 |
except Exception as e:
|
29 |
+
logging.error(f"Fallo al generar embedding para: {text_chunk}. Error: {e}")
|
30 |
item["embedding"] = None
|
31 |
|
32 |
return pd.DataFrame(pages_and_chunks)
|
33 |
|
34 |
def save_to_chroma_db(embeddings_df: pd.DataFrame, user_id: str, document_id: str):
|
35 |
"""
|
36 |
+
Guarda en ChromaDB los embeddings generados.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
"""
|
38 |
client = initialize_client()
|
39 |
+
# Creas o recuperas la colecci贸n. Aseg煤rate de usar el mismo nombre
|
40 |
+
# que luego usar谩s en tus queries.
|
41 |
collection = client.get_or_create_collection(name=f"text_embeddings_{user_id}")
|
42 |
|
43 |
combined_key = f"{user_id}_{document_id}"
|
44 |
|
45 |
ids = [f"{combined_key}_{i}" for i in range(len(embeddings_df))]
|
46 |
documents = embeddings_df["sentence_chunk"].tolist()
|
47 |
+
embeddings = embeddings_df["embedding"].tolist()
|
48 |
|
49 |
+
# Verificamos que ninguno sea None
|
50 |
+
for idx, emb in enumerate(embeddings):
|
51 |
+
if emb is None:
|
52 |
+
raise ValueError(
|
53 |
+
f"El chunk con ID {ids[idx]} no tiene embedding v谩lido (None)."
|
54 |
+
)
|
|
|
|
|
|
|
55 |
|
56 |
+
# 隆Ahora todos deben ser listas de floats!
|
57 |
+
# Podemos a帽adirlos a la colecci贸n:
|
58 |
collection.add(
|
59 |
documents=documents,
|
60 |
embeddings=embeddings,
|
61 |
ids=ids,
|
62 |
+
metadatas=[{"combined_key": combined_key} for _ in range(len(embeddings_df))]
|
63 |
)
|
64 |
|
65 |
+
def generate_document_id() -> str:
|
66 |
+
return str(uuid.uuid4())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
def query_chroma_db(user_id: str, document_id: str, query: str):
|
|
|
|
|
|
|
|
|
|
|
69 |
client = initialize_client()
|
70 |
collection = client.get_collection(name=f"text_embeddings_{user_id}")
|
|
|
71 |
combined_key = f"{user_id}_{document_id}"
|
|
|
72 |
|
73 |
results = collection.query(
|
74 |
query_texts=[query],
|
|
|
76 |
where={"combined_key": combined_key},
|
77 |
)
|
78 |
|
|
|
|
|
79 |
documents = results.get("documents", [])
|
80 |
+
if not documents:
|
81 |
+
return "No se encontraron documentos"
|
|
|
|
|
|
|
82 |
|
83 |
+
# Aplanar la lista de documentos
|
84 |
+
relevant_docs = [doc for sublist in documents for doc in sublist]
|
85 |
+
return "\n\n".join(relevant_docs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|