jerpint
commited on
Commit
•
d60948f
0
Parent(s):
First commit
Browse files- README.md +9 -0
- app.py +111 -0
- cfg.py +130 -0
- generate_embeddings.py +87 -0
- requirements.txt +3 -0
README.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Buster
|
3 |
+
emoji: 🤖
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: blue
|
6 |
+
sdk: gradio
|
7 |
+
app_file: app.py
|
8 |
+
python_version: 3.10.8
|
9 |
+
---
|
app.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cfg
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
from cfg import setup_buster
|
5 |
+
|
6 |
+
buster = setup_buster(cfg.buster_cfg)
|
7 |
+
|
8 |
+
|
9 |
+
def format_sources(matched_documents: pd.DataFrame) -> str:
|
10 |
+
if len(matched_documents) == 0:
|
11 |
+
return ""
|
12 |
+
|
13 |
+
matched_documents.similarity_to_answer = (
|
14 |
+
matched_documents.similarity_to_answer * 100
|
15 |
+
)
|
16 |
+
|
17 |
+
# print the page instead of the heading, more meaningful for hf docs
|
18 |
+
matched_documents["page"] = matched_documents.apply(
|
19 |
+
lambda x: x.url.split("/")[-1], axis=1
|
20 |
+
)
|
21 |
+
|
22 |
+
documents_answer_template: str = "📝 Here are the sources I used to answer your question:\n\n{documents}\n\n{footnote}"
|
23 |
+
document_template: str = "[🔗 {document.page}]({document.url}), relevance: {document.similarity_to_answer:2.1f} %"
|
24 |
+
|
25 |
+
documents = "\n".join(
|
26 |
+
[
|
27 |
+
document_template.format(document=document)
|
28 |
+
for _, document in matched_documents.iterrows()
|
29 |
+
]
|
30 |
+
)
|
31 |
+
footnote: str = "I'm a bot 🤖 and not always perfect."
|
32 |
+
|
33 |
+
return documents_answer_template.format(documents=documents, footnote=footnote)
|
34 |
+
|
35 |
+
|
36 |
+
def add_sources(history, completion):
|
37 |
+
if completion.answer_relevant:
|
38 |
+
formatted_sources = format_sources(completion.matched_documents)
|
39 |
+
history.append([None, formatted_sources])
|
40 |
+
|
41 |
+
return history
|
42 |
+
|
43 |
+
|
44 |
+
def user(user_input, history):
|
45 |
+
"""Adds user's question immediately to the chat."""
|
46 |
+
return "", history + [[user_input, None]]
|
47 |
+
|
48 |
+
|
49 |
+
def chat(history):
|
50 |
+
user_input = history[-1][0]
|
51 |
+
|
52 |
+
completion = buster.process_input(user_input)
|
53 |
+
|
54 |
+
history[-1][1] = ""
|
55 |
+
|
56 |
+
for token in completion.answer_generator:
|
57 |
+
history[-1][1] += token
|
58 |
+
|
59 |
+
yield history, completion
|
60 |
+
|
61 |
+
|
62 |
+
block = gr.Blocks()
|
63 |
+
|
64 |
+
with block:
|
65 |
+
gr.Markdown(
|
66 |
+
"""<h1><center>Buster 🤖: A Question-Answering Bot for your documentation</center></h1>"""
|
67 |
+
)
|
68 |
+
gr.Markdown(
|
69 |
+
"""
|
70 |
+
#### This chatbot is designed to answer any questions related to the [huggingface transformers](https://huggingface.co/docs/transformers/index) library.
|
71 |
+
#### It uses ChatGPT + embeddings to search the docs for relevant sections and uses them to answer questions. It can then cite its sources back to you to verify the information.
|
72 |
+
#### Note that LLMs are prone to hallucination, so all outputs should always be vetted by users.
|
73 |
+
|
74 |
+
#### The Code is open-sourced and available on [Github](www.github.com/jerpint/buster)")
|
75 |
+
"""
|
76 |
+
)
|
77 |
+
|
78 |
+
chatbot = gr.Chatbot()
|
79 |
+
|
80 |
+
with gr.Row():
|
81 |
+
with gr.Column(scale=4):
|
82 |
+
question = gr.Textbox(
|
83 |
+
label="What's your question?",
|
84 |
+
placeholder="Ask a question to AI stackoverflow here...",
|
85 |
+
lines=1,
|
86 |
+
)
|
87 |
+
submit = gr.Button(value="Send", variant="secondary")
|
88 |
+
|
89 |
+
examples = gr.Examples(
|
90 |
+
examples=[
|
91 |
+
"What kind of models should I use for images and text?",
|
92 |
+
"When should I finetune a model vs. training it form scratch?",
|
93 |
+
"Can you give me some python code to quickly finetune a model on my sentiment analysis dataset?",
|
94 |
+
],
|
95 |
+
inputs=question,
|
96 |
+
)
|
97 |
+
|
98 |
+
gr.HTML("️<center> Created with ❤️ by @jerpint and @hadrienbertrand.")
|
99 |
+
|
100 |
+
response = gr.State()
|
101 |
+
|
102 |
+
submit.click(user, [question, chatbot], [question, chatbot], queue=False).then(
|
103 |
+
chat, inputs=[chatbot], outputs=[chatbot, response]
|
104 |
+
).then(add_sources, inputs=[chatbot, response], outputs=[chatbot])
|
105 |
+
question.submit(user, [question, chatbot], [question, chatbot], queue=False).then(
|
106 |
+
chat, inputs=[chatbot], outputs=[chatbot, response]
|
107 |
+
).then(add_sources, inputs=[chatbot, response], outputs=[chatbot])
|
108 |
+
|
109 |
+
|
110 |
+
block.queue(concurrency_count=16)
|
111 |
+
block.launch(debug=True, share=False)
|
cfg.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from buster.busterbot import Buster, BusterConfig
|
2 |
+
from buster.completers import ChatGPTCompleter, Completer, DocumentAnswerer
|
3 |
+
from buster.formatters.documents import DocumentsFormatter
|
4 |
+
from buster.formatters.prompts import PromptFormatter
|
5 |
+
from buster.retriever import DeepLakeRetriever, Retriever
|
6 |
+
from buster.tokenizers import GPTTokenizer
|
7 |
+
from buster.validators import QuestionAnswerValidator, Validator
|
8 |
+
from buster.utils import extract_zip
|
9 |
+
|
10 |
+
from huggingface_hub import hf_hub_download
|
11 |
+
|
12 |
+
|
13 |
+
HUB_DB_FILE = "deeplake_store.zip"
|
14 |
+
REPO_ID = "jerpint/hf_buster_data"
|
15 |
+
|
16 |
+
hf_hub_download(
|
17 |
+
repo_id=REPO_ID,
|
18 |
+
repo_type="dataset",
|
19 |
+
filename=HUB_DB_FILE,
|
20 |
+
local_dir=".",
|
21 |
+
)
|
22 |
+
|
23 |
+
extract_zip(zip_file_path=HUB_DB_FILE, output_path=".")
|
24 |
+
|
25 |
+
|
26 |
+
buster_cfg = BusterConfig(
|
27 |
+
validator_cfg={
|
28 |
+
"unknown_response_templates": [
|
29 |
+
"I'm sorry, but I am an AI language model trained to assist with questions related to AI. I cannot answer that question as it is not relevant to the library or its usage. Is there anything else I can assist you with?",
|
30 |
+
],
|
31 |
+
"unknown_threshold": 0.85,
|
32 |
+
"embedding_model": "text-embedding-ada-002",
|
33 |
+
"use_reranking": True,
|
34 |
+
"invalid_question_response": "This question does not seem relevant to my current knowledge.",
|
35 |
+
"check_question_prompt": """You are a chatbot answering technical questions on the huggingface documentation, a library used to train and do inference on open-source artificial intelligence models.
|
36 |
+
|
37 |
+
Your job is to determine wether or not a question is valid, and should be answered.
|
38 |
+
More general questions are not considered valid, even if you might know the response.
|
39 |
+
Questions that are likely to be related to the huggingface library are considered valid.
|
40 |
+
A user will submit a question. Respond 'true' if it is valid, respond 'false' if it is invalid.
|
41 |
+
|
42 |
+
For example:
|
43 |
+
|
44 |
+
Q: How can I train a vision model?
|
45 |
+
true
|
46 |
+
|
47 |
+
Q: What is the meaning of life?
|
48 |
+
false
|
49 |
+
|
50 |
+
A user will submit a question. Respond 'true' if it is valid, respond 'false' if it is invalid.""",
|
51 |
+
"completion_kwargs": {
|
52 |
+
"model": "gpt-3.5-turbo",
|
53 |
+
"stream": False,
|
54 |
+
"temperature": 0,
|
55 |
+
},
|
56 |
+
},
|
57 |
+
retriever_cfg={
|
58 |
+
"path": "deeplake_store",
|
59 |
+
"top_k": 3,
|
60 |
+
"thresh": 0.7,
|
61 |
+
"max_tokens": 2000,
|
62 |
+
"embedding_model": "text-embedding-ada-002",
|
63 |
+
},
|
64 |
+
documents_answerer_cfg={
|
65 |
+
"no_documents_message": "No documents are available for this question.",
|
66 |
+
},
|
67 |
+
completion_cfg={
|
68 |
+
"completion_kwargs": {
|
69 |
+
"model": "gpt-3.5-turbo",
|
70 |
+
"stream": True,
|
71 |
+
"temperature": 0,
|
72 |
+
},
|
73 |
+
},
|
74 |
+
tokenizer_cfg={
|
75 |
+
"model_name": "gpt-3.5-turbo",
|
76 |
+
},
|
77 |
+
documents_formatter_cfg={
|
78 |
+
"max_tokens": 3500,
|
79 |
+
"formatter": "{content}",
|
80 |
+
},
|
81 |
+
prompt_formatter_cfg={
|
82 |
+
"max_tokens": 3500,
|
83 |
+
"text_before_docs": (
|
84 |
+
"You are an chatbot answering technical questions on the huggingface transformers library. "
|
85 |
+
"You can only respond to a question if the content necessary to answer the question is contained in the following provided documentation. "
|
86 |
+
"If the answer is in the documentation, summarize it in a helpful way to the user. "
|
87 |
+
"If it isn't, simply reply that you cannot answer the question. "
|
88 |
+
"Do not refer to the documentation directly, but use the instructions provided within it to answer questions. "
|
89 |
+
"Here is the documentation: "
|
90 |
+
"<DOCUMENTS> "
|
91 |
+
),
|
92 |
+
"text_after_docs": (
|
93 |
+
"<\DOCUMENTS>\n"
|
94 |
+
"REMEMBER:\n"
|
95 |
+
"You are an chatbot answering technical questions on the huggingface transformers library. "
|
96 |
+
"Here are the rules you must follow:\n"
|
97 |
+
"1) You must only respond with information contained in the documentation above. Say you do not know if the information is not provided.\n"
|
98 |
+
"2) Make sure to format your answers in Markdown format, including code block and snippets.\n"
|
99 |
+
"3) Do not reference any links, urls or hyperlinks in your answers.\n"
|
100 |
+
"4) Do not refer to the documentation directly, but use the instructions provided within it to answer questions. "
|
101 |
+
"5) If you do not know the answer to a question, or if it is completely irrelevant to the library usage, simply reply with:\n"
|
102 |
+
"'I'm sorry, but I am an AI language model trained to assist with questions related to AI. I cannot answer that question as it is not relevant to the library or its usage. Is there anything else I can assist you with?'"
|
103 |
+
"For example:\n"
|
104 |
+
"What is the meaning of life for an qa bot?\n"
|
105 |
+
"I'm sorry, but I am an AI language model trained to assist with questions related to the huggingface library. I cannot answer that question as it is not relevant to the library or its usage. Is there anything else I can assist you with? "
|
106 |
+
"Now answer the following question:\n"
|
107 |
+
),
|
108 |
+
},
|
109 |
+
)
|
110 |
+
|
111 |
+
|
112 |
+
def setup_buster(buster_cfg: BusterConfig):
|
113 |
+
"""initialize buster with a buster_cfg class"""
|
114 |
+
retriever: Retriever = DeepLakeRetriever(**buster_cfg.retriever_cfg)
|
115 |
+
tokenizer = GPTTokenizer(**buster_cfg.tokenizer_cfg)
|
116 |
+
document_answerer: DocumentAnswerer = DocumentAnswerer(
|
117 |
+
completer=ChatGPTCompleter(**buster_cfg.completion_cfg),
|
118 |
+
documents_formatter=DocumentsFormatter(
|
119 |
+
tokenizer=tokenizer, **buster_cfg.documents_formatter_cfg
|
120 |
+
),
|
121 |
+
prompt_formatter=PromptFormatter(
|
122 |
+
tokenizer=tokenizer, **buster_cfg.prompt_formatter_cfg
|
123 |
+
),
|
124 |
+
**buster_cfg.documents_answerer_cfg,
|
125 |
+
)
|
126 |
+
validator: Validator = QuestionAnswerValidator(**buster_cfg.validator_cfg)
|
127 |
+
buster: Buster = Buster(
|
128 |
+
retriever=retriever, document_answerer=document_answerer, validator=validator
|
129 |
+
)
|
130 |
+
return buster
|
generate_embeddings.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import zipfile
|
3 |
+
import requests
|
4 |
+
import pandas as pd
|
5 |
+
import time
|
6 |
+
|
7 |
+
from buster.documents_manager import DeepLakeDocumentsManager
|
8 |
+
|
9 |
+
from buster.docparser import get_all_documents
|
10 |
+
from buster.parser import HuggingfaceParser
|
11 |
+
|
12 |
+
hf_transformers_zip_url = "https://huggingface.co/datasets/hf-doc-build/doc-build/resolve/main/transformers/main.zip"
|
13 |
+
|
14 |
+
|
15 |
+
def download_and_unzip(zip_url, target_dir, overwrite=False):
|
16 |
+
"""Download a zip file from zip_url and unzip it to target_dir.
|
17 |
+
|
18 |
+
# Example usage
|
19 |
+
zip_url = "https://example.com/example.zip"
|
20 |
+
target_dir = "downloaded_files"
|
21 |
+
download_and_unzip(zip_url, target_dir, overwrite=True)
|
22 |
+
|
23 |
+
ChatGPT generated.
|
24 |
+
"""
|
25 |
+
# Create the target directory if it doesn't exist
|
26 |
+
if not os.path.exists(target_dir):
|
27 |
+
os.makedirs(target_dir)
|
28 |
+
|
29 |
+
# Get the filename from the zip_url
|
30 |
+
zip_filename = os.path.basename(zip_url)
|
31 |
+
target_path = os.path.join(target_dir, zip_filename)
|
32 |
+
|
33 |
+
# Check if the file already exists
|
34 |
+
if os.path.exists(target_path) and not overwrite:
|
35 |
+
print(f"{zip_filename} already exists in the target directory.")
|
36 |
+
return
|
37 |
+
|
38 |
+
# Download the zip file
|
39 |
+
response = requests.get(zip_url, stream=True)
|
40 |
+
if response.status_code == 200:
|
41 |
+
with open(target_path, "wb") as file:
|
42 |
+
for chunk in response.iter_content(chunk_size=8192):
|
43 |
+
file.write(chunk)
|
44 |
+
print(f"{zip_filename} downloaded successfully.")
|
45 |
+
|
46 |
+
# Unzip the file
|
47 |
+
with zipfile.ZipFile(target_path, "r") as zip_ref:
|
48 |
+
zip_ref.extractall(target_dir)
|
49 |
+
print(f"{zip_filename} extracted successfully.")
|
50 |
+
else:
|
51 |
+
print(f"Failed to download {zip_filename}. Status code: {response.status_code}")
|
52 |
+
|
53 |
+
|
54 |
+
# Download the tranformers html pages and unzip it
|
55 |
+
download_and_unzip(zip_url=hf_transformers_zip_url, target_dir=".")
|
56 |
+
|
57 |
+
# Extract all documents from the html into a dataframe
|
58 |
+
df = get_all_documents(
|
59 |
+
root_dir="transformers/main/en/",
|
60 |
+
base_url="https://huggingface.co/docs/transformers/main/en/",
|
61 |
+
parser_cls=HuggingfaceParser,
|
62 |
+
min_section_length=100,
|
63 |
+
max_section_length=1000,
|
64 |
+
)
|
65 |
+
|
66 |
+
# Add the source column
|
67 |
+
df["source"] = "hf_transformers"
|
68 |
+
|
69 |
+
# Save the .csv with chunks to disk
|
70 |
+
df.to_csv("hf_transformers.csv")
|
71 |
+
|
72 |
+
# Initialize the vector store
|
73 |
+
dm = DeepLakeDocumentsManager(
|
74 |
+
vector_store_path="deeplake_store",
|
75 |
+
overwrite=True,
|
76 |
+
required_columns=["url", "content", "source", "title"],
|
77 |
+
)
|
78 |
+
|
79 |
+
# Add all embeddings to the vector store
|
80 |
+
dm.batch_add(
|
81 |
+
df=df,
|
82 |
+
batch_size=3000,
|
83 |
+
min_time_interval=60,
|
84 |
+
num_workers=32,
|
85 |
+
csv_filename="embeddings.csv",
|
86 |
+
csv_overwrite=False,
|
87 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/jerpint/buster
|
2 |
+
huggingface-hub
|
3 |
+
gradio
|