import gradio as gr import torch import numpy as np import scipy.io.wavfile from transformers import VitsModel, AutoTokenizer import re # Load model and tokenizer model = VitsModel.from_pretrained("Somali-tts/somali_tts_model") tokenizer = AutoTokenizer.from_pretrained("saleolow/somali-mms-tts") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) model.eval() # Numbers in Somali number_words = { 0: "eber", 1: "koow", 2: "labo", 3: "seddex", 4: "afar", 5: "shan", 6: "lix", 7: "todobo", 8: "sideed", 9: "sagaal", 10: "toban", 11: "toban iyo koow", 12: "toban iyo labo", 13: "toban iyo seddex", 14: "toban iyo afar", 15: "toban iyo shan", 16: "toban iyo lix", 17: "toban iyo todobo", 18: "toban iyo sideed", 19: "toban iyo sagaal", 20: "labaatan", 30: "sodon", 40: "afartan", 50: "konton", 60: "lixdan", 70: "todobaatan", 80: "sideetan", 90: "sagaashan", 100: "boqol", 1000: "kun" } def number_to_words(number): number = int(number) if number < 20: return number_words[number] elif number < 100: tens, unit = divmod(number, 10) return number_words[tens * 10] + (" iyo " + number_words[unit] if unit else "") elif number < 1000: hundreds, remainder = divmod(number, 100) part = (number_words[hundreds] + " boqol") if hundreds > 1 else "boqol" if remainder: part += " iyo " + number_to_words(remainder) return part elif number < 1000000: thousands, remainder = divmod(number, 1000) words = [] if thousands == 1: words.append("kun") else: words.append(number_to_words(thousands) + " kun") if remainder >= 100: hundreds, rem2 = divmod(remainder, 100) if hundreds: boqol_text = (number_words[hundreds] + " boqol") if hundreds > 1 else "boqol" words.append(boqol_text) if rem2: words.append("iyo " + number_to_words(rem2)) elif remainder: words.append("iyo " + number_to_words(remainder)) return " ".join(words) elif number < 1000000000: millions, remainder = divmod(number, 1000000) words = [] if millions == 1: words.append("milyan") else: words.append(number_to_words(millions) + " milyan") if remainder: words.append(number_to_words(remainder)) return " ".join(words) else: return str(number) def normalize_text(text): text = re.sub(r'(\d{1,3})(,\d{3})+', lambda m: m.group(0).replace(",", ""), text) text = re.sub(r'\.\d+', '', text) def replace_num(match): return number_to_words(match.group()) text = re.sub(r'\d+', replace_num, text) symbol_map = { '$': 'doolar', '=': 'egwal', '+': 'balaas', '#': 'haash' } for sym, word in symbol_map.items(): text = text.replace(sym, ' ' + word + ' ') text = text.replace("KH", "qa").replace("Z", "S") text = text.replace("SH", "SHa'a").replace("DH", "Dha'a") text = text.replace("ZamZam", "SamSam") return text def tts(text): paragraphs = text.strip().split("\n") audio_list = [] max_chars = 500 # Qiyaasta ugu badan 2 daqiiqo warn_msg = "" for i, para in enumerate(paragraphs): para = para.strip() if not para: continue if len(para) > max_chars: warn_msg += f"❗ Qaybta {i+1} aad ayaa ka badan 2 daqiiqo. Waan kala jaray.\n" sub_parts = [para[j:j+max_chars] for j in range(0, len(para), max_chars)] else: sub_parts = [para] for part in sub_parts: norm_para = normalize_text(part) inputs = tokenizer(norm_para, return_tensors="pt").to(device) with torch.no_grad(): waveform = model(**inputs).waveform.squeeze().cpu().numpy() pause = np.zeros(int(model.config.sampling_rate * 0.8)) # 0.8s pause audio_list.append(np.concatenate((waveform, pause))) final_audio = np.concatenate(audio_list) filename = "output.wav" scipy.io.wavfile.write(filename, rate=model.config.sampling_rate, data=(final_audio * 32767).astype(np.int16)) if warn_msg: print(warn_msg) return filename # Gradio interface gr.Interface( fn=tts, inputs=gr.Textbox(label="Geli qoraal Soomaali ah", lines=10, placeholder="Ku qor 1 ama in ka badan paragraph..."), outputs=gr.Audio(label="Codka TTS"), title="Somali TTS", description="Ku qor qoraal Soomaaliyeed si aad u maqasho cod dabiici ah. Qoraalka ha ka badnaan 2 daqiiqo per jumlad." ).launch()