Spaces:
Running
on
Zero
Running
on
Zero
jedick
commited on
Commit
·
5cdd81a
1
Parent(s):
00c763e
Add LLM retrieval
Browse files- app.py +33 -19
- llm_retrieval.py +237 -0
app.py
CHANGED
@@ -3,6 +3,7 @@ import gradio as gr
|
|
3 |
from transformers import pipeline
|
4 |
import nltk
|
5 |
from retrieval import retrieve_from_pdf
|
|
|
6 |
import os
|
7 |
import json
|
8 |
from datetime import datetime
|
@@ -93,7 +94,9 @@ with gr.Blocks(theme=my_theme, css=custom_css, head=font_awesome_html) as demo:
|
|
93 |
with gr.Column(scale=3):
|
94 |
with gr.Row():
|
95 |
gr.Markdown("# AI4citations")
|
96 |
-
gr.Markdown(
|
|
|
|
|
97 |
claim = gr.Textbox(
|
98 |
label="Claim",
|
99 |
info="aka hypothesis",
|
@@ -105,6 +108,13 @@ with gr.Blocks(theme=my_theme, css=custom_css, head=font_awesome_html) as demo:
|
|
105 |
pdf_file = gr.File(
|
106 |
label="Upload PDF", type="filepath", height=120
|
107 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
get_evidence = gr.Button(value="Get Evidence")
|
109 |
top_k = gr.Slider(
|
110 |
1,
|
@@ -193,7 +203,7 @@ with gr.Blocks(theme=my_theme, css=custom_css, head=font_awesome_html) as demo:
|
|
193 |
### Usage:
|
194 |
|
195 |
- Input a **Claim**, then:
|
196 |
-
- Upload a PDF and click **Get Evidence** OR
|
197 |
- Input **Evidence** statements yourself
|
198 |
"""
|
199 |
)
|
@@ -232,24 +242,15 @@ with gr.Blocks(theme=my_theme, css=custom_css, head=font_awesome_html) as demo:
|
|
232 |
#### *Capstone project*
|
233 |
- <i class="fa-brands fa-github"></i> [jedick/MLE-capstone-project](https://github.com/jedick/MLE-capstone-project) (project repo)
|
234 |
- <i class="fa-brands fa-github"></i> [jedick/AI4citations](https://github.com/jedick/AI4citations) (app repo)
|
235 |
-
|
236 |
-
)
|
237 |
-
gr.Markdown(
|
238 |
-
"""
|
239 |
-
#### *Models*
|
240 |
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint](https://huggingface.co/jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint) (fine-tuned)
|
241 |
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli) (base)
|
242 |
-
|
243 |
-
)
|
244 |
-
|
245 |
-
"""
|
246 |
#### *Datasets for fine-tuning*
|
247 |
- <i class="fa-brands fa-github"></i> [allenai/SciFact](https://github.com/allenai/scifact) (SciFact)
|
248 |
- <i class="fa-brands fa-github"></i> [ScienceNLP-Lab/Citation-Integrity](https://github.com/ScienceNLP-Lab/Citation-Integrity) (CitInt)
|
249 |
-
"""
|
250 |
-
)
|
251 |
-
gr.Markdown(
|
252 |
-
"""
|
253 |
#### *Other sources*
|
254 |
- <i class="fa-brands fa-github"></i> [xhluca/bm25s](https://github.com/xhluca/bm25s) (evidence retrieval)
|
255 |
- <img src="https://plos.org/wp-content/uploads/2020/01/logo-color-blue.svg" style="height: 1.4em; display: inline-block;"> [Medicine](https://doi.org/10.1371/journal.pmed.0030197), <i class="fa-brands fa-wikipedia-w"></i> [CRISPR](https://en.wikipedia.org/wiki/CRISPR) (evidence retrieval examples)
|
@@ -335,6 +336,19 @@ with gr.Blocks(theme=my_theme, css=custom_css, head=font_awesome_html) as demo:
|
|
335 |
pdf_file = f"examples/retrieval/{pdf_file}"
|
336 |
return pdf_file, claim
|
337 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
def append_feedback(
|
339 |
claim: str, evidence: str, model: str, label: str, user_label: str
|
340 |
) -> None:
|
@@ -405,8 +419,8 @@ with gr.Blocks(theme=my_theme, css=custom_css, head=font_awesome_html) as demo:
|
|
405 |
# Get evidence from PDF and run the model
|
406 |
gr.on(
|
407 |
triggers=[get_evidence.click],
|
408 |
-
fn=
|
409 |
-
inputs=[pdf_file, claim, top_k],
|
410 |
outputs=evidence,
|
411 |
).then(
|
412 |
fn=query_model,
|
@@ -465,8 +479,8 @@ with gr.Blocks(theme=my_theme, css=custom_css, head=font_awesome_html) as demo:
|
|
465 |
outputs=[pdf_file, claim],
|
466 |
api_name=False,
|
467 |
).then(
|
468 |
-
fn=
|
469 |
-
inputs=[pdf_file, claim, top_k],
|
470 |
outputs=evidence,
|
471 |
api_name=False,
|
472 |
).then(
|
|
|
3 |
from transformers import pipeline
|
4 |
import nltk
|
5 |
from retrieval import retrieve_from_pdf
|
6 |
+
from llm_retrieval import retrieve_from_pdf_llm, retrieve_from_pdf_llm_fast
|
7 |
import os
|
8 |
import json
|
9 |
from datetime import datetime
|
|
|
94 |
with gr.Column(scale=3):
|
95 |
with gr.Row():
|
96 |
gr.Markdown("# AI4citations")
|
97 |
+
gr.Markdown(
|
98 |
+
"## *AI-powered citation verification* ([more info](https://github.com/jedick/AI4citations))"
|
99 |
+
)
|
100 |
claim = gr.Textbox(
|
101 |
label="Claim",
|
102 |
info="aka hypothesis",
|
|
|
108 |
pdf_file = gr.File(
|
109 |
label="Upload PDF", type="filepath", height=120
|
110 |
)
|
111 |
+
with gr.Row():
|
112 |
+
retrieval_method = gr.Radio(
|
113 |
+
choices=["BM25S", "LLM (Large)", "LLM (Fast)"],
|
114 |
+
value="BM25S",
|
115 |
+
label="Retrieval Method",
|
116 |
+
info="Choose between keyword-based (BM25S) or AI-based (LLM) evidence retrieval",
|
117 |
+
)
|
118 |
get_evidence = gr.Button(value="Get Evidence")
|
119 |
top_k = gr.Slider(
|
120 |
1,
|
|
|
203 |
### Usage:
|
204 |
|
205 |
- Input a **Claim**, then:
|
206 |
+
- Upload a PDF, select retrieval method, and click **Get Evidence** OR
|
207 |
- Input **Evidence** statements yourself
|
208 |
"""
|
209 |
)
|
|
|
242 |
#### *Capstone project*
|
243 |
- <i class="fa-brands fa-github"></i> [jedick/MLE-capstone-project](https://github.com/jedick/MLE-capstone-project) (project repo)
|
244 |
- <i class="fa-brands fa-github"></i> [jedick/AI4citations](https://github.com/jedick/AI4citations) (app repo)
|
245 |
+
#### *Claim Verification Models (text classification)*
|
|
|
|
|
|
|
|
|
246 |
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint](https://huggingface.co/jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint) (fine-tuned)
|
247 |
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli) (base)
|
248 |
+
#### *Evidence Retrieval Models (question answering)*
|
249 |
+
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [deepset/deberta-v3-large-squad2](https://huggingface.co/deepset/deberta-v3-large-squad2) (Large)
|
250 |
+
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert/distilbert-base-cased-distilled-squad) (Fast)
|
|
|
251 |
#### *Datasets for fine-tuning*
|
252 |
- <i class="fa-brands fa-github"></i> [allenai/SciFact](https://github.com/allenai/scifact) (SciFact)
|
253 |
- <i class="fa-brands fa-github"></i> [ScienceNLP-Lab/Citation-Integrity](https://github.com/ScienceNLP-Lab/Citation-Integrity) (CitInt)
|
|
|
|
|
|
|
|
|
254 |
#### *Other sources*
|
255 |
- <i class="fa-brands fa-github"></i> [xhluca/bm25s](https://github.com/xhluca/bm25s) (evidence retrieval)
|
256 |
- <img src="https://plos.org/wp-content/uploads/2020/01/logo-color-blue.svg" style="height: 1.4em; display: inline-block;"> [Medicine](https://doi.org/10.1371/journal.pmed.0030197), <i class="fa-brands fa-wikipedia-w"></i> [CRISPR](https://en.wikipedia.org/wiki/CRISPR) (evidence retrieval examples)
|
|
|
336 |
pdf_file = f"examples/retrieval/{pdf_file}"
|
337 |
return pdf_file, claim
|
338 |
|
339 |
+
def retrieve_evidence_with_method(pdf_file, claim, top_k, method):
|
340 |
+
"""
|
341 |
+
Retrieve evidence using the selected method
|
342 |
+
"""
|
343 |
+
if method == "BM25S":
|
344 |
+
return retrieve_from_pdf(pdf_file, claim, k=top_k)
|
345 |
+
elif method == "LLM (Large)":
|
346 |
+
return retrieve_from_pdf_llm(pdf_file, claim, k=top_k)
|
347 |
+
elif method == "LLM (Fast)":
|
348 |
+
return retrieve_from_pdf_llm_fast(pdf_file, claim, k=top_k)
|
349 |
+
else:
|
350 |
+
return f"Unknown retrieval method: {method}"
|
351 |
+
|
352 |
def append_feedback(
|
353 |
claim: str, evidence: str, model: str, label: str, user_label: str
|
354 |
) -> None:
|
|
|
419 |
# Get evidence from PDF and run the model
|
420 |
gr.on(
|
421 |
triggers=[get_evidence.click],
|
422 |
+
fn=retrieve_evidence_with_method,
|
423 |
+
inputs=[pdf_file, claim, top_k, retrieval_method],
|
424 |
outputs=evidence,
|
425 |
).then(
|
426 |
fn=query_model,
|
|
|
479 |
outputs=[pdf_file, claim],
|
480 |
api_name=False,
|
481 |
).then(
|
482 |
+
fn=retrieve_evidence_with_method,
|
483 |
+
inputs=[pdf_file, claim, top_k, retrieval_method],
|
484 |
outputs=evidence,
|
485 |
api_name=False,
|
486 |
).then(
|
llm_retrieval.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import fitz # pip install pymupdf
|
3 |
+
from unidecode import unidecode
|
4 |
+
from nltk.tokenize import sent_tokenize
|
5 |
+
from transformers import pipeline, AutoTokenizer
|
6 |
+
import torch
|
7 |
+
from typing import List, Tuple, Optional
|
8 |
+
import logging
|
9 |
+
|
10 |
+
# Configure logging
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
class LLMEvidenceRetriever:
|
16 |
+
"""
|
17 |
+
LLM-based evidence retrieval using extractive question answering
|
18 |
+
"""
|
19 |
+
|
20 |
+
def __init__(self, model_name: str = "deepset/deberta-v3-large-squad2"):
|
21 |
+
"""
|
22 |
+
Initialize the LLM evidence retriever
|
23 |
+
|
24 |
+
Args:
|
25 |
+
model_name: HuggingFace model for question answering
|
26 |
+
"""
|
27 |
+
self.model_name = model_name
|
28 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
29 |
+
self.qa_pipeline = pipeline(
|
30 |
+
"question-answering",
|
31 |
+
model=model_name,
|
32 |
+
tokenizer=self.tokenizer,
|
33 |
+
device=0 if torch.cuda.is_available() else -1,
|
34 |
+
)
|
35 |
+
# Maximum context length for the model
|
36 |
+
self.max_length = self.tokenizer.model_max_length
|
37 |
+
logger.info(f"Initialized LLM retriever with model: {model_name}")
|
38 |
+
|
39 |
+
def _extract_and_clean_text(self, pdf_file: str) -> str:
|
40 |
+
"""
|
41 |
+
Extract and clean text from PDF file
|
42 |
+
|
43 |
+
Args:
|
44 |
+
pdf_file: Path to PDF file
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
Cleaned text from PDF
|
48 |
+
"""
|
49 |
+
# Get PDF file as binary
|
50 |
+
with open(pdf_file, mode="rb") as f:
|
51 |
+
pdf_file_bytes = f.read()
|
52 |
+
|
53 |
+
# Extract text from the PDF
|
54 |
+
pdf_doc = fitz.open(stream=pdf_file_bytes, filetype="pdf")
|
55 |
+
pdf_text = ""
|
56 |
+
for page_num in range(pdf_doc.page_count):
|
57 |
+
page = pdf_doc.load_page(page_num)
|
58 |
+
pdf_text += page.get_text("text")
|
59 |
+
|
60 |
+
# Clean text
|
61 |
+
# Remove hyphens at end of lines
|
62 |
+
clean_text = re.sub("-\n", "", pdf_text)
|
63 |
+
# Replace remaining newline characters with space
|
64 |
+
clean_text = re.sub("\n", " ", clean_text)
|
65 |
+
# Replace unicode with ascii
|
66 |
+
clean_text = unidecode(clean_text)
|
67 |
+
|
68 |
+
return clean_text
|
69 |
+
|
70 |
+
def _chunk_text(self, text: str, max_chunk_size: int = 3000) -> List[str]:
|
71 |
+
"""
|
72 |
+
Split text into chunks that fit within model context window
|
73 |
+
|
74 |
+
Args:
|
75 |
+
text: Input text to chunk
|
76 |
+
max_chunk_size: Maximum size per chunk
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
List of text chunks
|
80 |
+
"""
|
81 |
+
sentences = sent_tokenize(text)
|
82 |
+
chunks = []
|
83 |
+
current_chunk = ""
|
84 |
+
|
85 |
+
for sentence in sentences:
|
86 |
+
# Check if adding this sentence would exceed the limit
|
87 |
+
if len(current_chunk) + len(sentence) + 1 <= max_chunk_size:
|
88 |
+
current_chunk += " " + sentence if current_chunk else sentence
|
89 |
+
else:
|
90 |
+
if current_chunk:
|
91 |
+
chunks.append(current_chunk.strip())
|
92 |
+
current_chunk = sentence
|
93 |
+
|
94 |
+
# Add the last chunk
|
95 |
+
if current_chunk:
|
96 |
+
chunks.append(current_chunk.strip())
|
97 |
+
|
98 |
+
return chunks
|
99 |
+
|
100 |
+
def _format_claim_as_question(self, claim: str) -> str:
|
101 |
+
"""
|
102 |
+
Convert a claim into a question format for better QA performance
|
103 |
+
|
104 |
+
Args:
|
105 |
+
claim: Input claim
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
Question formatted for QA model
|
109 |
+
"""
|
110 |
+
# Simple heuristics to convert claims to questions
|
111 |
+
claim = claim.strip()
|
112 |
+
|
113 |
+
# If already a question, return as is
|
114 |
+
if claim.endswith("?"):
|
115 |
+
return claim
|
116 |
+
|
117 |
+
# Convert common claim patterns to questions
|
118 |
+
if claim.lower().startswith(("the ", "a ", "an ")):
|
119 |
+
return f"What evidence supports that {claim.lower()}?"
|
120 |
+
elif "is" in claim.lower() or "are" in claim.lower():
|
121 |
+
return f"Is it true that {claim.lower()}?"
|
122 |
+
elif "can" in claim.lower() or "could" in claim.lower():
|
123 |
+
return f"{claim}?"
|
124 |
+
else:
|
125 |
+
return f"What evidence supports the claim that {claim.lower()}?"
|
126 |
+
|
127 |
+
def retrieve_evidence(self, pdf_file: str, claim: str, k: int = 5) -> str:
|
128 |
+
"""
|
129 |
+
Retrieve evidence from PDF using LLM-based question answering
|
130 |
+
|
131 |
+
Args:
|
132 |
+
pdf_file: Path to PDF file
|
133 |
+
claim: Claim to find evidence for
|
134 |
+
k: Number of evidence passages to retrieve
|
135 |
+
|
136 |
+
Returns:
|
137 |
+
Combined evidence text
|
138 |
+
"""
|
139 |
+
try:
|
140 |
+
# Extract and clean text from PDF
|
141 |
+
clean_text = self._extract_and_clean_text(pdf_file)
|
142 |
+
|
143 |
+
# Convert claim to question format
|
144 |
+
question = self._format_claim_as_question(claim)
|
145 |
+
|
146 |
+
# Split text into manageable chunks
|
147 |
+
chunks = self._chunk_text(clean_text)
|
148 |
+
|
149 |
+
# Get answers from each chunk
|
150 |
+
answers = []
|
151 |
+
for i, chunk in enumerate(chunks):
|
152 |
+
try:
|
153 |
+
result = self.qa_pipeline(
|
154 |
+
question=question, context=chunk, max_answer_len=200, top_k=1
|
155 |
+
)
|
156 |
+
|
157 |
+
# Handle both single answer and list of answers
|
158 |
+
if isinstance(result, list):
|
159 |
+
result = result[0]
|
160 |
+
|
161 |
+
if result["score"] > 0.1: # Confidence threshold
|
162 |
+
# Extract surrounding context for better evidence
|
163 |
+
answer_text = result["answer"]
|
164 |
+
start_idx = max(0, chunk.find(answer_text) - 100)
|
165 |
+
end_idx = min(
|
166 |
+
len(chunk), chunk.find(answer_text) + len(answer_text) + 100
|
167 |
+
)
|
168 |
+
context = chunk[start_idx:end_idx].strip()
|
169 |
+
|
170 |
+
answers.append(
|
171 |
+
{"text": context, "score": result["score"], "chunk_idx": i}
|
172 |
+
)
|
173 |
+
|
174 |
+
except Exception as e:
|
175 |
+
logger.warning(f"Error processing chunk {i}: {str(e)}")
|
176 |
+
continue
|
177 |
+
|
178 |
+
# Sort by confidence score and take top k
|
179 |
+
answers.sort(key=lambda x: x["score"], reverse=True)
|
180 |
+
top_answers = answers[:k]
|
181 |
+
|
182 |
+
# Combine evidence passages
|
183 |
+
if top_answers:
|
184 |
+
evidence_texts = [answer["text"] for answer in top_answers]
|
185 |
+
combined_evidence = " ".join(evidence_texts)
|
186 |
+
return combined_evidence
|
187 |
+
else:
|
188 |
+
logger.warning("No evidence found with sufficient confidence")
|
189 |
+
return "No relevant evidence found in the document."
|
190 |
+
|
191 |
+
except Exception as e:
|
192 |
+
logger.error(f"Error in LLM evidence retrieval: {str(e)}")
|
193 |
+
return f"Error retrieving evidence: {str(e)}"
|
194 |
+
|
195 |
+
|
196 |
+
def retrieve_from_pdf_llm(pdf_file: str, query: str, k: int = 5) -> str:
|
197 |
+
"""
|
198 |
+
Wrapper function for LLM-based evidence retrieval
|
199 |
+
Compatible with the existing BM25S interface
|
200 |
+
|
201 |
+
Args:
|
202 |
+
pdf_file: Path to PDF file
|
203 |
+
query: Query/claim to find evidence for
|
204 |
+
k: Number of evidence passages to retrieve
|
205 |
+
|
206 |
+
Returns:
|
207 |
+
Retrieved evidence text
|
208 |
+
"""
|
209 |
+
# Initialize retriever (in production, this should be cached)
|
210 |
+
retriever = LLMEvidenceRetriever()
|
211 |
+
return retriever.retrieve_evidence(pdf_file, query, k)
|
212 |
+
|
213 |
+
|
214 |
+
# Alternative lightweight model for faster inference
|
215 |
+
class LightweightLLMRetriever(LLMEvidenceRetriever):
|
216 |
+
"""
|
217 |
+
Lightweight version using smaller, faster models
|
218 |
+
"""
|
219 |
+
|
220 |
+
def __init__(self):
|
221 |
+
super().__init__(model_name="distilbert-base-cased-distilled-squad")
|
222 |
+
|
223 |
+
|
224 |
+
def retrieve_from_pdf_llm_fast(pdf_file: str, query: str, k: int = 5) -> str:
|
225 |
+
"""
|
226 |
+
Fast LLM-based evidence retrieval using lightweight model
|
227 |
+
|
228 |
+
Args:
|
229 |
+
pdf_file: Path to PDF file
|
230 |
+
query: Query/claim to find evidence for
|
231 |
+
k: Number of evidence passages to retrieve
|
232 |
+
|
233 |
+
Returns:
|
234 |
+
Retrieved evidence text
|
235 |
+
"""
|
236 |
+
retriever = LightweightLLMRetriever()
|
237 |
+
return retriever.retrieve_evidence(pdf_file, query, k)
|