Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
model = T5ForConditionalGeneration.from_pretrained("t5-small")
|
| 6 |
+
tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def generate_response(input_text):
|
| 10 |
+
input_ids = tokenizer.encode("chatbot: " + input_text, return_tensors="pt", max_length=512)
|
| 11 |
+
output_ids = model.generate(input_ids, max_length=100, num_beams=1, early_stopping=True)
|
| 12 |
+
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 13 |
+
return response
|
| 14 |
+
|
| 15 |
+
# Set up Streamlit app
|
| 16 |
+
st.title("Simple Chatbot with T5")
|
| 17 |
+
user_input = st.text_input("You:", "")
|
| 18 |
+
|
| 19 |
+
if st.button("Send"):
|
| 20 |
+
if user_input.strip() != "":
|
| 21 |
+
response = generate_response(user_input)
|
| 22 |
+
st.text_area("Bot:", response)
|
| 23 |
+
else:
|
| 24 |
+
st.warning("Please enter a valid input.")
|