|  | import json | 
					
						
						|  | import os | 
					
						
						|  | from datetime import datetime, timezone | 
					
						
						|  |  | 
					
						
						|  | from src.display.formatting import styled_error, styled_message, styled_warning | 
					
						
						|  | from src.envs import API, EVAL_REQUESTS_PATH, H4_TOKEN, QUEUE_REPO, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA | 
					
						
						|  | from src.leaderboard.filter_models import DO_NOT_SUBMIT_MODELS | 
					
						
						|  | from src.submission.check_validity import ( | 
					
						
						|  | already_submitted_models, | 
					
						
						|  | check_model_card, | 
					
						
						|  | get_model_size, | 
					
						
						|  | is_model_on_hub, | 
					
						
						|  | user_submission_permission, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | REQUESTED_MODELS = None | 
					
						
						|  | USERS_TO_SUBMISSION_DATES = None | 
					
						
						|  |  | 
					
						
						|  | def add_new_eval( | 
					
						
						|  | model: str, | 
					
						
						|  | base_model: str, | 
					
						
						|  | revision: str, | 
					
						
						|  | precision: str, | 
					
						
						|  | private: bool, | 
					
						
						|  | weight_type: str, | 
					
						
						|  | model_type: str, | 
					
						
						|  | ): | 
					
						
						|  | global REQUESTED_MODELS | 
					
						
						|  | global USERS_TO_SUBMISSION_DATES | 
					
						
						|  | if not REQUESTED_MODELS: | 
					
						
						|  | REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) | 
					
						
						|  |  | 
					
						
						|  | user_name = "" | 
					
						
						|  | model_path = model | 
					
						
						|  | if "/" in model: | 
					
						
						|  | user_name = model.split("/")[0] | 
					
						
						|  | model_path = model.split("/")[1] | 
					
						
						|  |  | 
					
						
						|  | precision = precision.split(" ")[0] | 
					
						
						|  | current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") | 
					
						
						|  |  | 
					
						
						|  | if model_type is None or model_type == "": | 
					
						
						|  | return styled_error("Please select a model type.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if user_name != "": | 
					
						
						|  | user_can_submit, error_msg = user_submission_permission( | 
					
						
						|  | user_name, USERS_TO_SUBMISSION_DATES, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA | 
					
						
						|  | ) | 
					
						
						|  | if not user_can_submit: | 
					
						
						|  | return styled_error(error_msg) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if model in DO_NOT_SUBMIT_MODELS or base_model in DO_NOT_SUBMIT_MODELS: | 
					
						
						|  | return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if revision == "": | 
					
						
						|  | revision = "main" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if weight_type in ["Delta", "Adapter"]: | 
					
						
						|  | base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=H4_TOKEN, test_tokenizer=True) | 
					
						
						|  | if not base_model_on_hub: | 
					
						
						|  | return styled_error(f'Base model "{base_model}" {error}') | 
					
						
						|  |  | 
					
						
						|  | if not weight_type == "Adapter": | 
					
						
						|  | model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True) | 
					
						
						|  | if not model_on_hub: | 
					
						
						|  | return styled_error(f'Model "{model}" {error}') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | model_info = API.model_info(repo_id=model, revision=revision) | 
					
						
						|  | except Exception: | 
					
						
						|  | return styled_error("Could not get your model information. Please fill it up properly.") | 
					
						
						|  |  | 
					
						
						|  | model_size = get_model_size(model_info=model_info, precision=precision) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | license = model_info.cardData["license"] | 
					
						
						|  | except Exception: | 
					
						
						|  | return styled_error("Please select a license for your model") | 
					
						
						|  |  | 
					
						
						|  | modelcard_OK, error_msg = check_model_card(model) | 
					
						
						|  | if not modelcard_OK: | 
					
						
						|  | return styled_error(error_msg) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | print("Adding new eval") | 
					
						
						|  |  | 
					
						
						|  | eval_entry = { | 
					
						
						|  | "model": model, | 
					
						
						|  | "base_model": base_model, | 
					
						
						|  | "revision": revision, | 
					
						
						|  | "private": private, | 
					
						
						|  | "precision": precision, | 
					
						
						|  | "weight_type": weight_type, | 
					
						
						|  | "status": "PENDING", | 
					
						
						|  | "submitted_time": current_time, | 
					
						
						|  | "model_type": model_type, | 
					
						
						|  | "likes": model_info.likes, | 
					
						
						|  | "params": model_size, | 
					
						
						|  | "license": license, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if f"{model}_{revision}_{precision}" in REQUESTED_MODELS: | 
					
						
						|  | return styled_warning("This model has been already submitted.") | 
					
						
						|  |  | 
					
						
						|  | print("Creating eval file") | 
					
						
						|  | OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" | 
					
						
						|  | os.makedirs(OUT_DIR, exist_ok=True) | 
					
						
						|  | out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json" | 
					
						
						|  |  | 
					
						
						|  | with open(out_path, "w") as f: | 
					
						
						|  | f.write(json.dumps(eval_entry)) | 
					
						
						|  |  | 
					
						
						|  | print("Uploading eval file") | 
					
						
						|  | API.upload_file( | 
					
						
						|  | path_or_fileobj=out_path, | 
					
						
						|  | path_in_repo=out_path.split("eval-queue/")[1], | 
					
						
						|  | repo_id=QUEUE_REPO, | 
					
						
						|  | repo_type="dataset", | 
					
						
						|  | commit_message=f"Add {model} to eval queue", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | os.remove(out_path) | 
					
						
						|  |  | 
					
						
						|  | return styled_message( | 
					
						
						|  | "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list." | 
					
						
						|  | ) | 
					
						
						|  |  |