Spaces:
Configuration error
Configuration error
init
Browse files- .gitattributes +1 -0
- models/Ghibli.safetensors +3 -0
- requirements.txt +14 -0
- src/__init__.py +0 -0
- src/layers_cache.py +368 -0
- src/lora_helper.py +196 -0
- src/pipeline.py +745 -0
- src/prompt_helper.py +205 -0
- src/transformer_flux.py +583 -0
- test_imgs/00.png +3 -0
- test_imgs/02.png +3 -0
- test_imgs/03.png +3 -0
- test_imgs/04.png +3 -0
- test_imgs/06.png +3 -0
- test_imgs/07.png +3 -0
- test_imgs/08.png +3 -0
- test_imgs/09.png +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
test_imgs/*.png filter=lfs diff=lfs merge=lfs -text
|
models/Ghibli.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a5204551bd9cb587d659fe1cc50cf524b6339348bc5b1c3ea3b4efe71eb5e753
|
| 3 |
+
size 298895992
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--extra-index-url https://download.pytorch.org/whl/cu114
|
| 2 |
+
torch
|
| 3 |
+
torchvision
|
| 4 |
+
torchaudio==2.3.1
|
| 5 |
+
diffusers==0.32.2
|
| 6 |
+
easydict==1.13
|
| 7 |
+
einops==0.8.1
|
| 8 |
+
peft==0.14.0
|
| 9 |
+
pillow==11.0.0
|
| 10 |
+
protobuf==5.29.3
|
| 11 |
+
requests==2.32.3
|
| 12 |
+
safetensors==0.5.2
|
| 13 |
+
sentencepiece==0.2.0
|
| 14 |
+
transformers==4.49.0
|
src/__init__.py
ADDED
|
File without changes
|
src/layers_cache.py
ADDED
|
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import inspect
|
| 2 |
+
import math
|
| 3 |
+
from typing import Callable, List, Optional, Tuple, Union
|
| 4 |
+
from einops import rearrange
|
| 5 |
+
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from torch import Tensor
|
| 9 |
+
from diffusers.models.attention_processor import Attention
|
| 10 |
+
|
| 11 |
+
class LoRALinearLayer(nn.Module):
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
in_features: int,
|
| 15 |
+
out_features: int,
|
| 16 |
+
rank: int = 4,
|
| 17 |
+
network_alpha: Optional[float] = None,
|
| 18 |
+
device: Optional[Union[torch.device, str]] = None,
|
| 19 |
+
dtype: Optional[torch.dtype] = None,
|
| 20 |
+
cond_width=512,
|
| 21 |
+
cond_height=512,
|
| 22 |
+
number=0,
|
| 23 |
+
n_loras=1
|
| 24 |
+
):
|
| 25 |
+
super().__init__()
|
| 26 |
+
self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
|
| 27 |
+
self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
|
| 28 |
+
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
|
| 29 |
+
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
|
| 30 |
+
self.network_alpha = network_alpha
|
| 31 |
+
self.rank = rank
|
| 32 |
+
self.out_features = out_features
|
| 33 |
+
self.in_features = in_features
|
| 34 |
+
|
| 35 |
+
nn.init.normal_(self.down.weight, std=1 / rank)
|
| 36 |
+
nn.init.zeros_(self.up.weight)
|
| 37 |
+
|
| 38 |
+
self.cond_height = cond_height
|
| 39 |
+
self.cond_width = cond_width
|
| 40 |
+
self.number = number
|
| 41 |
+
self.n_loras = n_loras
|
| 42 |
+
|
| 43 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 44 |
+
orig_dtype = hidden_states.dtype
|
| 45 |
+
dtype = self.down.weight.dtype
|
| 46 |
+
|
| 47 |
+
####
|
| 48 |
+
batch_size = hidden_states.shape[0]
|
| 49 |
+
cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
|
| 50 |
+
block_size = hidden_states.shape[1] - cond_size * self.n_loras
|
| 51 |
+
shape = (batch_size, hidden_states.shape[1], 3072)
|
| 52 |
+
mask = torch.ones(shape, device=hidden_states.device, dtype=dtype)
|
| 53 |
+
mask[:, :block_size+self.number*cond_size, :] = 0
|
| 54 |
+
mask[:, block_size+(self.number+1)*cond_size:, :] = 0
|
| 55 |
+
hidden_states = mask * hidden_states
|
| 56 |
+
####
|
| 57 |
+
|
| 58 |
+
down_hidden_states = self.down(hidden_states.to(dtype))
|
| 59 |
+
up_hidden_states = self.up(down_hidden_states)
|
| 60 |
+
|
| 61 |
+
if self.network_alpha is not None:
|
| 62 |
+
up_hidden_states *= self.network_alpha / self.rank
|
| 63 |
+
|
| 64 |
+
return up_hidden_states.to(orig_dtype)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class MultiSingleStreamBlockLoraProcessor(nn.Module):
|
| 68 |
+
def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1):
|
| 69 |
+
super().__init__()
|
| 70 |
+
# Initialize a list to store the LoRA layers
|
| 71 |
+
self.n_loras = n_loras
|
| 72 |
+
self.cond_width = cond_width
|
| 73 |
+
self.cond_height = cond_height
|
| 74 |
+
|
| 75 |
+
self.q_loras = nn.ModuleList([
|
| 76 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
| 77 |
+
for i in range(n_loras)
|
| 78 |
+
])
|
| 79 |
+
self.k_loras = nn.ModuleList([
|
| 80 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
| 81 |
+
for i in range(n_loras)
|
| 82 |
+
])
|
| 83 |
+
self.v_loras = nn.ModuleList([
|
| 84 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
| 85 |
+
for i in range(n_loras)
|
| 86 |
+
])
|
| 87 |
+
self.lora_weights = lora_weights
|
| 88 |
+
self.bank_attn = None
|
| 89 |
+
self.bank_kv = []
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def __call__(self,
|
| 93 |
+
attn: Attention,
|
| 94 |
+
hidden_states: torch.FloatTensor,
|
| 95 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
| 96 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 97 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 98 |
+
use_cond = False
|
| 99 |
+
) -> torch.FloatTensor:
|
| 100 |
+
|
| 101 |
+
batch_size, seq_len, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 102 |
+
scaled_seq_len = hidden_states.shape[1]
|
| 103 |
+
cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
|
| 104 |
+
block_size = scaled_seq_len - cond_size * self.n_loras
|
| 105 |
+
scaled_cond_size = cond_size
|
| 106 |
+
scaled_block_size = block_size
|
| 107 |
+
|
| 108 |
+
if len(self.bank_kv)== 0:
|
| 109 |
+
cache = True
|
| 110 |
+
else:
|
| 111 |
+
cache = False
|
| 112 |
+
|
| 113 |
+
if cache:
|
| 114 |
+
query = attn.to_q(hidden_states)
|
| 115 |
+
key = attn.to_k(hidden_states)
|
| 116 |
+
value = attn.to_v(hidden_states)
|
| 117 |
+
for i in range(self.n_loras):
|
| 118 |
+
query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
|
| 119 |
+
key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
|
| 120 |
+
value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)
|
| 121 |
+
|
| 122 |
+
inner_dim = key.shape[-1]
|
| 123 |
+
head_dim = inner_dim // attn.heads
|
| 124 |
+
|
| 125 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 126 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 127 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 128 |
+
|
| 129 |
+
self.bank_kv.append(key[:, :, scaled_block_size:, :])
|
| 130 |
+
self.bank_kv.append(value[:, :, scaled_block_size:, :])
|
| 131 |
+
|
| 132 |
+
if attn.norm_q is not None:
|
| 133 |
+
query = attn.norm_q(query)
|
| 134 |
+
if attn.norm_k is not None:
|
| 135 |
+
key = attn.norm_k(key)
|
| 136 |
+
|
| 137 |
+
if image_rotary_emb is not None:
|
| 138 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
| 139 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
| 140 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
| 141 |
+
|
| 142 |
+
num_cond_blocks = self.n_loras
|
| 143 |
+
mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
|
| 144 |
+
mask[ :scaled_block_size, :] = 0 # First block_size row
|
| 145 |
+
for i in range(num_cond_blocks):
|
| 146 |
+
start = i * scaled_cond_size + scaled_block_size
|
| 147 |
+
end = (i + 1) * scaled_cond_size + scaled_block_size
|
| 148 |
+
mask[start:end, start:end] = 0 # Diagonal blocks
|
| 149 |
+
mask = mask * -1e10
|
| 150 |
+
mask = mask.to(query.dtype)
|
| 151 |
+
|
| 152 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)
|
| 153 |
+
self.bank_attn = hidden_states[:, :, scaled_block_size:, :]
|
| 154 |
+
|
| 155 |
+
else:
|
| 156 |
+
query = attn.to_q(hidden_states)
|
| 157 |
+
key = attn.to_k(hidden_states)
|
| 158 |
+
value = attn.to_v(hidden_states)
|
| 159 |
+
|
| 160 |
+
inner_dim = query.shape[-1]
|
| 161 |
+
head_dim = inner_dim // attn.heads
|
| 162 |
+
|
| 163 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 164 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 165 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 166 |
+
|
| 167 |
+
key = torch.concat([key[:, :, :scaled_block_size, :], self.bank_kv[0]], dim=-2)
|
| 168 |
+
value = torch.concat([value[:, :, :scaled_block_size, :], self.bank_kv[1]], dim=-2)
|
| 169 |
+
|
| 170 |
+
if attn.norm_q is not None:
|
| 171 |
+
query = attn.norm_q(query)
|
| 172 |
+
if attn.norm_k is not None:
|
| 173 |
+
key = attn.norm_k(key)
|
| 174 |
+
|
| 175 |
+
if image_rotary_emb is not None:
|
| 176 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
| 177 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
| 178 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
| 179 |
+
|
| 180 |
+
query = query[:, :, :scaled_block_size, :]
|
| 181 |
+
|
| 182 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
|
| 183 |
+
hidden_states = torch.concat([hidden_states, self.bank_attn], dim=-2)
|
| 184 |
+
|
| 185 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 186 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 187 |
+
|
| 188 |
+
cond_hidden_states = hidden_states[:, block_size:,:]
|
| 189 |
+
hidden_states = hidden_states[:, : block_size,:]
|
| 190 |
+
|
| 191 |
+
return hidden_states if not use_cond else (hidden_states, cond_hidden_states)
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
class MultiDoubleStreamBlockLoraProcessor(nn.Module):
|
| 195 |
+
def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1):
|
| 196 |
+
super().__init__()
|
| 197 |
+
|
| 198 |
+
# Initialize a list to store the LoRA layers
|
| 199 |
+
self.n_loras = n_loras
|
| 200 |
+
self.cond_width = cond_width
|
| 201 |
+
self.cond_height = cond_height
|
| 202 |
+
self.q_loras = nn.ModuleList([
|
| 203 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
| 204 |
+
for i in range(n_loras)
|
| 205 |
+
])
|
| 206 |
+
self.k_loras = nn.ModuleList([
|
| 207 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
| 208 |
+
for i in range(n_loras)
|
| 209 |
+
])
|
| 210 |
+
self.v_loras = nn.ModuleList([
|
| 211 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
| 212 |
+
for i in range(n_loras)
|
| 213 |
+
])
|
| 214 |
+
self.proj_loras = nn.ModuleList([
|
| 215 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
| 216 |
+
for i in range(n_loras)
|
| 217 |
+
])
|
| 218 |
+
self.lora_weights = lora_weights
|
| 219 |
+
self.bank_attn = None
|
| 220 |
+
self.bank_kv = []
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def __call__(self,
|
| 224 |
+
attn: Attention,
|
| 225 |
+
hidden_states: torch.FloatTensor,
|
| 226 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
| 227 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 228 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 229 |
+
use_cond=False,
|
| 230 |
+
) -> torch.FloatTensor:
|
| 231 |
+
|
| 232 |
+
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 233 |
+
cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
|
| 234 |
+
block_size = hidden_states.shape[1] - cond_size * self.n_loras
|
| 235 |
+
scaled_seq_len = encoder_hidden_states.shape[1] + hidden_states.shape[1]
|
| 236 |
+
scaled_cond_size = cond_size
|
| 237 |
+
scaled_block_size = scaled_seq_len - scaled_cond_size * self.n_loras
|
| 238 |
+
|
| 239 |
+
# `context` projections.
|
| 240 |
+
inner_dim = 3072
|
| 241 |
+
head_dim = inner_dim // attn.heads
|
| 242 |
+
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
| 243 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
| 244 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
| 245 |
+
|
| 246 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
| 247 |
+
batch_size, -1, attn.heads, head_dim
|
| 248 |
+
).transpose(1, 2)
|
| 249 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
| 250 |
+
batch_size, -1, attn.heads, head_dim
|
| 251 |
+
).transpose(1, 2)
|
| 252 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
| 253 |
+
batch_size, -1, attn.heads, head_dim
|
| 254 |
+
).transpose(1, 2)
|
| 255 |
+
|
| 256 |
+
if attn.norm_added_q is not None:
|
| 257 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
| 258 |
+
if attn.norm_added_k is not None:
|
| 259 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
| 260 |
+
|
| 261 |
+
if len(self.bank_kv)== 0:
|
| 262 |
+
cache = True
|
| 263 |
+
else:
|
| 264 |
+
cache = False
|
| 265 |
+
|
| 266 |
+
if cache:
|
| 267 |
+
|
| 268 |
+
query = attn.to_q(hidden_states)
|
| 269 |
+
key = attn.to_k(hidden_states)
|
| 270 |
+
value = attn.to_v(hidden_states)
|
| 271 |
+
for i in range(self.n_loras):
|
| 272 |
+
query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
|
| 273 |
+
key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
|
| 274 |
+
value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)
|
| 275 |
+
|
| 276 |
+
inner_dim = key.shape[-1]
|
| 277 |
+
head_dim = inner_dim // attn.heads
|
| 278 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 279 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 280 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
self.bank_kv.append(key[:, :, block_size:, :])
|
| 284 |
+
self.bank_kv.append(value[:, :, block_size:, :])
|
| 285 |
+
|
| 286 |
+
if attn.norm_q is not None:
|
| 287 |
+
query = attn.norm_q(query)
|
| 288 |
+
if attn.norm_k is not None:
|
| 289 |
+
key = attn.norm_k(key)
|
| 290 |
+
|
| 291 |
+
# attention
|
| 292 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
| 293 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
| 294 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
| 295 |
+
|
| 296 |
+
if image_rotary_emb is not None:
|
| 297 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
| 298 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
| 299 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
| 300 |
+
|
| 301 |
+
num_cond_blocks = self.n_loras
|
| 302 |
+
mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
|
| 303 |
+
mask[ :scaled_block_size, :] = 0 # First block_size row
|
| 304 |
+
for i in range(num_cond_blocks):
|
| 305 |
+
start = i * scaled_cond_size + scaled_block_size
|
| 306 |
+
end = (i + 1) * scaled_cond_size + scaled_block_size
|
| 307 |
+
mask[start:end, start:end] = 0 # Diagonal blocks
|
| 308 |
+
mask = mask * -1e10
|
| 309 |
+
mask = mask.to(query.dtype)
|
| 310 |
+
|
| 311 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)
|
| 312 |
+
self.bank_attn = hidden_states[:, :, scaled_block_size:, :]
|
| 313 |
+
|
| 314 |
+
else:
|
| 315 |
+
query = attn.to_q(hidden_states)
|
| 316 |
+
key = attn.to_k(hidden_states)
|
| 317 |
+
value = attn.to_v(hidden_states)
|
| 318 |
+
|
| 319 |
+
inner_dim = query.shape[-1]
|
| 320 |
+
head_dim = inner_dim // attn.heads
|
| 321 |
+
|
| 322 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 323 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 324 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 325 |
+
|
| 326 |
+
key = torch.concat([key[:, :, :block_size, :], self.bank_kv[0]], dim=-2)
|
| 327 |
+
value = torch.concat([value[:, :, :block_size, :], self.bank_kv[1]], dim=-2)
|
| 328 |
+
|
| 329 |
+
if attn.norm_q is not None:
|
| 330 |
+
query = attn.norm_q(query)
|
| 331 |
+
if attn.norm_k is not None:
|
| 332 |
+
key = attn.norm_k(key)
|
| 333 |
+
|
| 334 |
+
# attention
|
| 335 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
| 336 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
| 337 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
| 338 |
+
|
| 339 |
+
if image_rotary_emb is not None:
|
| 340 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
| 341 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
| 342 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
| 343 |
+
|
| 344 |
+
query = query[:, :, :scaled_block_size, :]
|
| 345 |
+
|
| 346 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
|
| 347 |
+
hidden_states = torch.concat([hidden_states, self.bank_attn], dim=-2)
|
| 348 |
+
|
| 349 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 350 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 351 |
+
|
| 352 |
+
encoder_hidden_states, hidden_states = (
|
| 353 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
| 354 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
# Linear projection (with LoRA weight applied to each proj layer)
|
| 358 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 359 |
+
for i in range(self.n_loras):
|
| 360 |
+
hidden_states = hidden_states + self.lora_weights[i] * self.proj_loras[i](hidden_states)
|
| 361 |
+
# dropout
|
| 362 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 363 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
| 364 |
+
|
| 365 |
+
cond_hidden_states = hidden_states[:, block_size:,:]
|
| 366 |
+
hidden_states = hidden_states[:, :block_size,:]
|
| 367 |
+
|
| 368 |
+
return (hidden_states, encoder_hidden_states, cond_hidden_states) if use_cond else (encoder_hidden_states, hidden_states)
|
src/lora_helper.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusers.models.attention_processor import FluxAttnProcessor2_0
|
| 2 |
+
from safetensors import safe_open
|
| 3 |
+
import re
|
| 4 |
+
import torch
|
| 5 |
+
from .layers_cache import MultiDoubleStreamBlockLoraProcessor, MultiSingleStreamBlockLoraProcessor
|
| 6 |
+
|
| 7 |
+
device = "cuda"
|
| 8 |
+
|
| 9 |
+
def load_safetensors(path):
|
| 10 |
+
tensors = {}
|
| 11 |
+
with safe_open(path, framework="pt", device="cpu") as f:
|
| 12 |
+
for key in f.keys():
|
| 13 |
+
tensors[key] = f.get_tensor(key)
|
| 14 |
+
return tensors
|
| 15 |
+
|
| 16 |
+
def get_lora_rank(checkpoint):
|
| 17 |
+
for k in checkpoint.keys():
|
| 18 |
+
if k.endswith(".down.weight"):
|
| 19 |
+
return checkpoint[k].shape[0]
|
| 20 |
+
|
| 21 |
+
def load_checkpoint(local_path):
|
| 22 |
+
if local_path is not None:
|
| 23 |
+
if '.safetensors' in local_path:
|
| 24 |
+
print(f"Loading .safetensors checkpoint from {local_path}")
|
| 25 |
+
checkpoint = load_safetensors(local_path)
|
| 26 |
+
else:
|
| 27 |
+
print(f"Loading checkpoint from {local_path}")
|
| 28 |
+
checkpoint = torch.load(local_path, map_location='cpu')
|
| 29 |
+
return checkpoint
|
| 30 |
+
|
| 31 |
+
def update_model_with_lora(checkpoint, lora_weights, transformer, cond_size):
|
| 32 |
+
number = len(lora_weights)
|
| 33 |
+
ranks = [get_lora_rank(checkpoint) for _ in range(number)]
|
| 34 |
+
lora_attn_procs = {}
|
| 35 |
+
double_blocks_idx = list(range(19))
|
| 36 |
+
single_blocks_idx = list(range(38))
|
| 37 |
+
for name, attn_processor in transformer.attn_processors.items():
|
| 38 |
+
match = re.search(r'\.(\d+)\.', name)
|
| 39 |
+
if match:
|
| 40 |
+
layer_index = int(match.group(1))
|
| 41 |
+
|
| 42 |
+
if name.startswith("transformer_blocks") and layer_index in double_blocks_idx:
|
| 43 |
+
|
| 44 |
+
lora_state_dicts = {}
|
| 45 |
+
for key, value in checkpoint.items():
|
| 46 |
+
# Match based on the layer index in the key (assuming the key contains layer index)
|
| 47 |
+
if re.search(r'\.(\d+)\.', key):
|
| 48 |
+
checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
|
| 49 |
+
if checkpoint_layer_index == layer_index and key.startswith("transformer_blocks"):
|
| 50 |
+
lora_state_dicts[key] = value
|
| 51 |
+
|
| 52 |
+
lora_attn_procs[name] = MultiDoubleStreamBlockLoraProcessor(
|
| 53 |
+
dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=lora_weights, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=number
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
# Load the weights from the checkpoint dictionary into the corresponding layers
|
| 57 |
+
for n in range(number):
|
| 58 |
+
lora_attn_procs[name].q_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.down.weight', None)
|
| 59 |
+
lora_attn_procs[name].q_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.up.weight', None)
|
| 60 |
+
lora_attn_procs[name].k_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.down.weight', None)
|
| 61 |
+
lora_attn_procs[name].k_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.up.weight', None)
|
| 62 |
+
lora_attn_procs[name].v_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.down.weight', None)
|
| 63 |
+
lora_attn_procs[name].v_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.up.weight', None)
|
| 64 |
+
lora_attn_procs[name].proj_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.proj_loras.{n}.down.weight', None)
|
| 65 |
+
lora_attn_procs[name].proj_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.proj_loras.{n}.up.weight', None)
|
| 66 |
+
lora_attn_procs[name].to(device)
|
| 67 |
+
|
| 68 |
+
elif name.startswith("single_transformer_blocks") and layer_index in single_blocks_idx:
|
| 69 |
+
|
| 70 |
+
lora_state_dicts = {}
|
| 71 |
+
for key, value in checkpoint.items():
|
| 72 |
+
# Match based on the layer index in the key (assuming the key contains layer index)
|
| 73 |
+
if re.search(r'\.(\d+)\.', key):
|
| 74 |
+
checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
|
| 75 |
+
if checkpoint_layer_index == layer_index and key.startswith("single_transformer_blocks"):
|
| 76 |
+
lora_state_dicts[key] = value
|
| 77 |
+
|
| 78 |
+
lora_attn_procs[name] = MultiSingleStreamBlockLoraProcessor(
|
| 79 |
+
dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=lora_weights, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=number
|
| 80 |
+
)
|
| 81 |
+
# Load the weights from the checkpoint dictionary into the corresponding layers
|
| 82 |
+
for n in range(number):
|
| 83 |
+
lora_attn_procs[name].q_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.down.weight', None)
|
| 84 |
+
lora_attn_procs[name].q_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.up.weight', None)
|
| 85 |
+
lora_attn_procs[name].k_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.down.weight', None)
|
| 86 |
+
lora_attn_procs[name].k_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.up.weight', None)
|
| 87 |
+
lora_attn_procs[name].v_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.down.weight', None)
|
| 88 |
+
lora_attn_procs[name].v_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.up.weight', None)
|
| 89 |
+
lora_attn_procs[name].to(device)
|
| 90 |
+
else:
|
| 91 |
+
lora_attn_procs[name] = FluxAttnProcessor2_0()
|
| 92 |
+
|
| 93 |
+
transformer.set_attn_processor(lora_attn_procs)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def update_model_with_multi_lora(checkpoints, lora_weights, transformer, cond_size):
|
| 97 |
+
ck_number = len(checkpoints)
|
| 98 |
+
cond_lora_number = [len(ls) for ls in lora_weights]
|
| 99 |
+
cond_number = sum(cond_lora_number)
|
| 100 |
+
ranks = [get_lora_rank(checkpoint) for checkpoint in checkpoints]
|
| 101 |
+
multi_lora_weight = []
|
| 102 |
+
for ls in lora_weights:
|
| 103 |
+
for n in ls:
|
| 104 |
+
multi_lora_weight.append(n)
|
| 105 |
+
|
| 106 |
+
lora_attn_procs = {}
|
| 107 |
+
double_blocks_idx = list(range(19))
|
| 108 |
+
single_blocks_idx = list(range(38))
|
| 109 |
+
for name, attn_processor in transformer.attn_processors.items():
|
| 110 |
+
match = re.search(r'\.(\d+)\.', name)
|
| 111 |
+
if match:
|
| 112 |
+
layer_index = int(match.group(1))
|
| 113 |
+
|
| 114 |
+
if name.startswith("transformer_blocks") and layer_index in double_blocks_idx:
|
| 115 |
+
lora_state_dicts = [{} for _ in range(ck_number)]
|
| 116 |
+
for idx, checkpoint in enumerate(checkpoints):
|
| 117 |
+
for key, value in checkpoint.items():
|
| 118 |
+
# Match based on the layer index in the key (assuming the key contains layer index)
|
| 119 |
+
if re.search(r'\.(\d+)\.', key):
|
| 120 |
+
checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
|
| 121 |
+
if checkpoint_layer_index == layer_index and key.startswith("transformer_blocks"):
|
| 122 |
+
lora_state_dicts[idx][key] = value
|
| 123 |
+
|
| 124 |
+
lora_attn_procs[name] = MultiDoubleStreamBlockLoraProcessor(
|
| 125 |
+
dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=multi_lora_weight, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=cond_number
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
# Load the weights from the checkpoint dictionary into the corresponding layers
|
| 129 |
+
num = 0
|
| 130 |
+
for idx in range(ck_number):
|
| 131 |
+
for n in range(cond_lora_number[idx]):
|
| 132 |
+
lora_attn_procs[name].q_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.down.weight', None)
|
| 133 |
+
lora_attn_procs[name].q_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.up.weight', None)
|
| 134 |
+
lora_attn_procs[name].k_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.down.weight', None)
|
| 135 |
+
lora_attn_procs[name].k_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.up.weight', None)
|
| 136 |
+
lora_attn_procs[name].v_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.down.weight', None)
|
| 137 |
+
lora_attn_procs[name].v_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.up.weight', None)
|
| 138 |
+
lora_attn_procs[name].proj_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.proj_loras.{n}.down.weight', None)
|
| 139 |
+
lora_attn_procs[name].proj_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.proj_loras.{n}.up.weight', None)
|
| 140 |
+
lora_attn_procs[name].to(device)
|
| 141 |
+
num += 1
|
| 142 |
+
|
| 143 |
+
elif name.startswith("single_transformer_blocks") and layer_index in single_blocks_idx:
|
| 144 |
+
|
| 145 |
+
lora_state_dicts = [{} for _ in range(ck_number)]
|
| 146 |
+
for idx, checkpoint in enumerate(checkpoints):
|
| 147 |
+
for key, value in checkpoint.items():
|
| 148 |
+
# Match based on the layer index in the key (assuming the key contains layer index)
|
| 149 |
+
if re.search(r'\.(\d+)\.', key):
|
| 150 |
+
checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
|
| 151 |
+
if checkpoint_layer_index == layer_index and key.startswith("single_transformer_blocks"):
|
| 152 |
+
lora_state_dicts[idx][key] = value
|
| 153 |
+
|
| 154 |
+
lora_attn_procs[name] = MultiSingleStreamBlockLoraProcessor(
|
| 155 |
+
dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=multi_lora_weight, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=cond_number
|
| 156 |
+
)
|
| 157 |
+
# Load the weights from the checkpoint dictionary into the corresponding layers
|
| 158 |
+
num = 0
|
| 159 |
+
for idx in range(ck_number):
|
| 160 |
+
for n in range(cond_lora_number[idx]):
|
| 161 |
+
lora_attn_procs[name].q_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.down.weight', None)
|
| 162 |
+
lora_attn_procs[name].q_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.up.weight', None)
|
| 163 |
+
lora_attn_procs[name].k_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.down.weight', None)
|
| 164 |
+
lora_attn_procs[name].k_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.up.weight', None)
|
| 165 |
+
lora_attn_procs[name].v_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.down.weight', None)
|
| 166 |
+
lora_attn_procs[name].v_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.up.weight', None)
|
| 167 |
+
lora_attn_procs[name].to(device)
|
| 168 |
+
num += 1
|
| 169 |
+
|
| 170 |
+
else:
|
| 171 |
+
lora_attn_procs[name] = FluxAttnProcessor2_0()
|
| 172 |
+
|
| 173 |
+
transformer.set_attn_processor(lora_attn_procs)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def set_single_lora(transformer, local_path, lora_weights=[], cond_size=512):
|
| 177 |
+
checkpoint = load_checkpoint(local_path)
|
| 178 |
+
update_model_with_lora(checkpoint, lora_weights, transformer, cond_size)
|
| 179 |
+
|
| 180 |
+
def set_multi_lora(transformer, local_paths, lora_weights=[[]], cond_size=512):
|
| 181 |
+
checkpoints = [load_checkpoint(local_path) for local_path in local_paths]
|
| 182 |
+
update_model_with_multi_lora(checkpoints, lora_weights, transformer, cond_size)
|
| 183 |
+
|
| 184 |
+
def unset_lora(transformer):
|
| 185 |
+
lora_attn_procs = {}
|
| 186 |
+
for name, attn_processor in transformer.attn_processors.items():
|
| 187 |
+
lora_attn_procs[name] = FluxAttnProcessor2_0()
|
| 188 |
+
transformer.set_attn_processor(lora_attn_procs)
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
'''
|
| 192 |
+
unset_lora(pipe.transformer)
|
| 193 |
+
lora_path = "./lora.safetensors"
|
| 194 |
+
lora_weights = [1, 1]
|
| 195 |
+
set_lora(pipe.transformer, local_path=lora_path, lora_weights=lora_weights, cond_size=512)
|
| 196 |
+
'''
|
src/pipeline.py
ADDED
|
@@ -0,0 +1,745 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import inspect
|
| 2 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
| 7 |
+
|
| 8 |
+
from diffusers.image_processor import (VaeImageProcessor)
|
| 9 |
+
from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin
|
| 10 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
| 11 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
| 12 |
+
from diffusers.utils import (
|
| 13 |
+
USE_PEFT_BACKEND,
|
| 14 |
+
is_torch_xla_available,
|
| 15 |
+
logging,
|
| 16 |
+
scale_lora_layers,
|
| 17 |
+
unscale_lora_layers,
|
| 18 |
+
)
|
| 19 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 20 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 21 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
| 22 |
+
from torchvision.transforms.functional import pad
|
| 23 |
+
from .transformer_flux import FluxTransformer2DModel
|
| 24 |
+
|
| 25 |
+
if is_torch_xla_available():
|
| 26 |
+
import torch_xla.core.xla_model as xm
|
| 27 |
+
|
| 28 |
+
XLA_AVAILABLE = True
|
| 29 |
+
else:
|
| 30 |
+
XLA_AVAILABLE = False
|
| 31 |
+
|
| 32 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 33 |
+
|
| 34 |
+
def calculate_shift(
|
| 35 |
+
image_seq_len,
|
| 36 |
+
base_seq_len: int = 256,
|
| 37 |
+
max_seq_len: int = 4096,
|
| 38 |
+
base_shift: float = 0.5,
|
| 39 |
+
max_shift: float = 1.16,
|
| 40 |
+
):
|
| 41 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
| 42 |
+
b = base_shift - m * base_seq_len
|
| 43 |
+
mu = image_seq_len * m + b
|
| 44 |
+
return mu
|
| 45 |
+
|
| 46 |
+
def prepare_latent_image_ids_(height, width, device, dtype):
|
| 47 |
+
latent_image_ids = torch.zeros(height//2, width//2, 3, device=device, dtype=dtype)
|
| 48 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height//2, device=device)[:, None] # y
|
| 49 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width//2, device=device)[None, :] # x
|
| 50 |
+
return latent_image_ids
|
| 51 |
+
|
| 52 |
+
def prepare_latent_subject_ids(height, width, device, dtype):
|
| 53 |
+
latent_image_ids = torch.zeros(height // 2, width // 2, 3, device=device, dtype=dtype)
|
| 54 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2, device=device)[:, None]
|
| 55 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2, device=device)[None, :]
|
| 56 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
| 57 |
+
latent_image_ids = latent_image_ids.reshape(
|
| 58 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
| 59 |
+
)
|
| 60 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
| 61 |
+
|
| 62 |
+
def resize_position_encoding(batch_size, original_height, original_width, target_height, target_width, device, dtype):
|
| 63 |
+
latent_image_ids = prepare_latent_image_ids_(original_height, original_width, device, dtype)
|
| 64 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
| 65 |
+
latent_image_ids = latent_image_ids.reshape(
|
| 66 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
scale_h = original_height / target_height
|
| 70 |
+
scale_w = original_width / target_width
|
| 71 |
+
latent_image_ids_resized = torch.zeros(target_height//2, target_width//2, 3, device=device, dtype=dtype)
|
| 72 |
+
latent_image_ids_resized[..., 1] = latent_image_ids_resized[..., 1] + torch.arange(target_height//2, device=device)[:, None] * scale_h
|
| 73 |
+
latent_image_ids_resized[..., 2] = latent_image_ids_resized[..., 2] + torch.arange(target_width//2, device=device)[None, :] * scale_w
|
| 74 |
+
|
| 75 |
+
cond_latent_image_id_height, cond_latent_image_id_width, cond_latent_image_id_channels = latent_image_ids_resized.shape
|
| 76 |
+
cond_latent_image_ids = latent_image_ids_resized.reshape(
|
| 77 |
+
cond_latent_image_id_height * cond_latent_image_id_width, cond_latent_image_id_channels
|
| 78 |
+
)
|
| 79 |
+
return latent_image_ids, cond_latent_image_ids
|
| 80 |
+
|
| 81 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
| 82 |
+
def retrieve_latents(
|
| 83 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
| 84 |
+
):
|
| 85 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
| 86 |
+
return encoder_output.latent_dist.sample(generator)
|
| 87 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
| 88 |
+
return encoder_output.latent_dist.mode()
|
| 89 |
+
elif hasattr(encoder_output, "latents"):
|
| 90 |
+
return encoder_output.latents
|
| 91 |
+
else:
|
| 92 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 96 |
+
def retrieve_timesteps(
|
| 97 |
+
scheduler,
|
| 98 |
+
num_inference_steps: Optional[int] = None,
|
| 99 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 100 |
+
timesteps: Optional[List[int]] = None,
|
| 101 |
+
sigmas: Optional[List[float]] = None,
|
| 102 |
+
**kwargs,
|
| 103 |
+
):
|
| 104 |
+
if timesteps is not None and sigmas is not None:
|
| 105 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
| 106 |
+
if timesteps is not None:
|
| 107 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 108 |
+
if not accepts_timesteps:
|
| 109 |
+
raise ValueError(
|
| 110 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 111 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 112 |
+
)
|
| 113 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 114 |
+
timesteps = scheduler.timesteps
|
| 115 |
+
num_inference_steps = len(timesteps)
|
| 116 |
+
elif sigmas is not None:
|
| 117 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 118 |
+
if not accept_sigmas:
|
| 119 |
+
raise ValueError(
|
| 120 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 121 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 122 |
+
)
|
| 123 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 124 |
+
timesteps = scheduler.timesteps
|
| 125 |
+
num_inference_steps = len(timesteps)
|
| 126 |
+
else:
|
| 127 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 128 |
+
timesteps = scheduler.timesteps
|
| 129 |
+
return timesteps, num_inference_steps
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class FluxPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
|
| 133 |
+
def __init__(
|
| 134 |
+
self,
|
| 135 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
| 136 |
+
vae: AutoencoderKL,
|
| 137 |
+
text_encoder: CLIPTextModel,
|
| 138 |
+
tokenizer: CLIPTokenizer,
|
| 139 |
+
text_encoder_2: T5EncoderModel,
|
| 140 |
+
tokenizer_2: T5TokenizerFast,
|
| 141 |
+
transformer: FluxTransformer2DModel,
|
| 142 |
+
):
|
| 143 |
+
super().__init__()
|
| 144 |
+
|
| 145 |
+
self.register_modules(
|
| 146 |
+
vae=vae,
|
| 147 |
+
text_encoder=text_encoder,
|
| 148 |
+
text_encoder_2=text_encoder_2,
|
| 149 |
+
tokenizer=tokenizer,
|
| 150 |
+
tokenizer_2=tokenizer_2,
|
| 151 |
+
transformer=transformer,
|
| 152 |
+
scheduler=scheduler,
|
| 153 |
+
)
|
| 154 |
+
self.vae_scale_factor = (
|
| 155 |
+
2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
|
| 156 |
+
)
|
| 157 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 158 |
+
self.tokenizer_max_length = (
|
| 159 |
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
| 160 |
+
)
|
| 161 |
+
self.default_sample_size = 64
|
| 162 |
+
|
| 163 |
+
def _get_t5_prompt_embeds(
|
| 164 |
+
self,
|
| 165 |
+
prompt: Union[str, List[str]] = None,
|
| 166 |
+
num_images_per_prompt: int = 1,
|
| 167 |
+
max_sequence_length: int = 512,
|
| 168 |
+
device: Optional[torch.device] = None,
|
| 169 |
+
dtype: Optional[torch.dtype] = None,
|
| 170 |
+
):
|
| 171 |
+
device = device or self._execution_device
|
| 172 |
+
dtype = dtype or self.text_encoder.dtype
|
| 173 |
+
|
| 174 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 175 |
+
batch_size = len(prompt)
|
| 176 |
+
|
| 177 |
+
text_inputs = self.tokenizer_2(
|
| 178 |
+
prompt,
|
| 179 |
+
padding="max_length",
|
| 180 |
+
max_length=max_sequence_length,
|
| 181 |
+
truncation=True,
|
| 182 |
+
return_length=False,
|
| 183 |
+
return_overflowing_tokens=False,
|
| 184 |
+
return_tensors="pt",
|
| 185 |
+
)
|
| 186 |
+
text_input_ids = text_inputs.input_ids
|
| 187 |
+
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
|
| 188 |
+
|
| 189 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
| 190 |
+
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1: -1])
|
| 191 |
+
logger.warning(
|
| 192 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
| 193 |
+
f" {max_sequence_length} tokens: {removed_text}"
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
|
| 197 |
+
|
| 198 |
+
dtype = self.text_encoder_2.dtype
|
| 199 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
| 200 |
+
|
| 201 |
+
_, seq_len, _ = prompt_embeds.shape
|
| 202 |
+
|
| 203 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
| 204 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 205 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 206 |
+
|
| 207 |
+
return prompt_embeds
|
| 208 |
+
|
| 209 |
+
def _get_clip_prompt_embeds(
|
| 210 |
+
self,
|
| 211 |
+
prompt: Union[str, List[str]],
|
| 212 |
+
num_images_per_prompt: int = 1,
|
| 213 |
+
device: Optional[torch.device] = None,
|
| 214 |
+
):
|
| 215 |
+
device = device or self._execution_device
|
| 216 |
+
|
| 217 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 218 |
+
batch_size = len(prompt)
|
| 219 |
+
|
| 220 |
+
text_inputs = self.tokenizer(
|
| 221 |
+
prompt,
|
| 222 |
+
padding="max_length",
|
| 223 |
+
max_length=self.tokenizer_max_length,
|
| 224 |
+
truncation=True,
|
| 225 |
+
return_overflowing_tokens=False,
|
| 226 |
+
return_length=False,
|
| 227 |
+
return_tensors="pt",
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
text_input_ids = text_inputs.input_ids
|
| 231 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
| 232 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
| 233 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1: -1])
|
| 234 |
+
logger.warning(
|
| 235 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 236 |
+
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
| 237 |
+
)
|
| 238 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
|
| 239 |
+
|
| 240 |
+
# Use pooled output of CLIPTextModel
|
| 241 |
+
prompt_embeds = prompt_embeds.pooler_output
|
| 242 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
| 243 |
+
|
| 244 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 245 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
|
| 246 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
| 247 |
+
|
| 248 |
+
return prompt_embeds
|
| 249 |
+
|
| 250 |
+
def encode_prompt(
|
| 251 |
+
self,
|
| 252 |
+
prompt: Union[str, List[str]],
|
| 253 |
+
prompt_2: Union[str, List[str]],
|
| 254 |
+
device: Optional[torch.device] = None,
|
| 255 |
+
num_images_per_prompt: int = 1,
|
| 256 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 257 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 258 |
+
max_sequence_length: int = 512,
|
| 259 |
+
lora_scale: Optional[float] = None,
|
| 260 |
+
):
|
| 261 |
+
device = device or self._execution_device
|
| 262 |
+
|
| 263 |
+
# set lora scale so that monkey patched LoRA
|
| 264 |
+
# function of text encoder can correctly access it
|
| 265 |
+
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
| 266 |
+
self._lora_scale = lora_scale
|
| 267 |
+
|
| 268 |
+
# dynamically adjust the LoRA scale
|
| 269 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
| 270 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
| 271 |
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
| 272 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
| 273 |
+
|
| 274 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 275 |
+
|
| 276 |
+
if prompt_embeds is None:
|
| 277 |
+
prompt_2 = prompt_2 or prompt
|
| 278 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
| 279 |
+
|
| 280 |
+
# We only use the pooled prompt output from the CLIPTextModel
|
| 281 |
+
pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
| 282 |
+
prompt=prompt,
|
| 283 |
+
device=device,
|
| 284 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 285 |
+
)
|
| 286 |
+
prompt_embeds = self._get_t5_prompt_embeds(
|
| 287 |
+
prompt=prompt_2,
|
| 288 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 289 |
+
max_sequence_length=max_sequence_length,
|
| 290 |
+
device=device,
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
if self.text_encoder is not None:
|
| 294 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 295 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 296 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 297 |
+
|
| 298 |
+
if self.text_encoder_2 is not None:
|
| 299 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 300 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 301 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
| 302 |
+
|
| 303 |
+
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
|
| 304 |
+
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
| 305 |
+
|
| 306 |
+
return prompt_embeds, pooled_prompt_embeds, text_ids
|
| 307 |
+
|
| 308 |
+
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
|
| 309 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
| 310 |
+
if isinstance(generator, list):
|
| 311 |
+
image_latents = [
|
| 312 |
+
retrieve_latents(self.vae.encode(image[i: i + 1]), generator=generator[i])
|
| 313 |
+
for i in range(image.shape[0])
|
| 314 |
+
]
|
| 315 |
+
image_latents = torch.cat(image_latents, dim=0)
|
| 316 |
+
else:
|
| 317 |
+
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
| 318 |
+
|
| 319 |
+
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
| 320 |
+
|
| 321 |
+
return image_latents
|
| 322 |
+
|
| 323 |
+
def check_inputs(
|
| 324 |
+
self,
|
| 325 |
+
prompt,
|
| 326 |
+
prompt_2,
|
| 327 |
+
height,
|
| 328 |
+
width,
|
| 329 |
+
prompt_embeds=None,
|
| 330 |
+
pooled_prompt_embeds=None,
|
| 331 |
+
callback_on_step_end_tensor_inputs=None,
|
| 332 |
+
max_sequence_length=None,
|
| 333 |
+
):
|
| 334 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 335 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 336 |
+
|
| 337 |
+
if prompt is not None and prompt_embeds is not None:
|
| 338 |
+
raise ValueError(
|
| 339 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 340 |
+
" only forward one of the two."
|
| 341 |
+
)
|
| 342 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
| 343 |
+
raise ValueError(
|
| 344 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 345 |
+
" only forward one of the two."
|
| 346 |
+
)
|
| 347 |
+
elif prompt is None and prompt_embeds is None:
|
| 348 |
+
raise ValueError(
|
| 349 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 350 |
+
)
|
| 351 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
| 352 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 353 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
| 354 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
| 355 |
+
|
| 356 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
| 357 |
+
raise ValueError(
|
| 358 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
if max_sequence_length is not None and max_sequence_length > 512:
|
| 362 |
+
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
| 363 |
+
|
| 364 |
+
@staticmethod
|
| 365 |
+
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
| 366 |
+
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
| 367 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
|
| 368 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
|
| 369 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
| 370 |
+
latent_image_ids = latent_image_ids.reshape(
|
| 371 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
| 372 |
+
)
|
| 373 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
| 374 |
+
|
| 375 |
+
@staticmethod
|
| 376 |
+
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
| 377 |
+
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
| 378 |
+
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
| 379 |
+
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
| 380 |
+
return latents
|
| 381 |
+
|
| 382 |
+
@staticmethod
|
| 383 |
+
def _unpack_latents(latents, height, width, vae_scale_factor):
|
| 384 |
+
batch_size, num_patches, channels = latents.shape
|
| 385 |
+
|
| 386 |
+
height = height // vae_scale_factor
|
| 387 |
+
width = width // vae_scale_factor
|
| 388 |
+
|
| 389 |
+
latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
|
| 390 |
+
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
| 391 |
+
|
| 392 |
+
latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
|
| 393 |
+
|
| 394 |
+
return latents
|
| 395 |
+
|
| 396 |
+
def enable_vae_slicing(self):
|
| 397 |
+
r"""
|
| 398 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
| 399 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
| 400 |
+
"""
|
| 401 |
+
self.vae.enable_slicing()
|
| 402 |
+
|
| 403 |
+
def disable_vae_slicing(self):
|
| 404 |
+
r"""
|
| 405 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
| 406 |
+
computing decoding in one step.
|
| 407 |
+
"""
|
| 408 |
+
self.vae.disable_slicing()
|
| 409 |
+
|
| 410 |
+
def enable_vae_tiling(self):
|
| 411 |
+
r"""
|
| 412 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
| 413 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
| 414 |
+
processing larger images.
|
| 415 |
+
"""
|
| 416 |
+
self.vae.enable_tiling()
|
| 417 |
+
|
| 418 |
+
def disable_vae_tiling(self):
|
| 419 |
+
r"""
|
| 420 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
| 421 |
+
computing decoding in one step.
|
| 422 |
+
"""
|
| 423 |
+
self.vae.disable_tiling()
|
| 424 |
+
|
| 425 |
+
def prepare_latents(
|
| 426 |
+
self,
|
| 427 |
+
batch_size,
|
| 428 |
+
num_channels_latents,
|
| 429 |
+
height,
|
| 430 |
+
width,
|
| 431 |
+
dtype,
|
| 432 |
+
device,
|
| 433 |
+
generator,
|
| 434 |
+
subject_image,
|
| 435 |
+
condition_image,
|
| 436 |
+
latents=None,
|
| 437 |
+
cond_number=1,
|
| 438 |
+
sub_number=1
|
| 439 |
+
):
|
| 440 |
+
height_cond = 2 * (self.cond_size // self.vae_scale_factor)
|
| 441 |
+
width_cond = 2 * (self.cond_size // self.vae_scale_factor)
|
| 442 |
+
height = 2 * (int(height) // self.vae_scale_factor)
|
| 443 |
+
width = 2 * (int(width) // self.vae_scale_factor)
|
| 444 |
+
|
| 445 |
+
shape = (batch_size, num_channels_latents, height, width) # 1 16 106 80
|
| 446 |
+
noise_latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 447 |
+
noise_latents = self._pack_latents(noise_latents, batch_size, num_channels_latents, height, width)
|
| 448 |
+
noise_latent_image_ids, cond_latent_image_ids = resize_position_encoding(
|
| 449 |
+
batch_size,
|
| 450 |
+
height,
|
| 451 |
+
width,
|
| 452 |
+
height_cond,
|
| 453 |
+
width_cond,
|
| 454 |
+
device,
|
| 455 |
+
dtype,
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
latents_to_concat = []
|
| 459 |
+
latents_ids_to_concat = [noise_latent_image_ids]
|
| 460 |
+
|
| 461 |
+
# subject
|
| 462 |
+
if subject_image is not None:
|
| 463 |
+
shape_subject = (batch_size, num_channels_latents, height_cond*sub_number, width_cond)
|
| 464 |
+
subject_image = subject_image.to(device=device, dtype=dtype)
|
| 465 |
+
subject_image_latents = self._encode_vae_image(image=subject_image, generator=generator)
|
| 466 |
+
subject_latents = self._pack_latents(subject_image_latents, batch_size, num_channels_latents, height_cond*sub_number, width_cond)
|
| 467 |
+
mask2 = torch.zeros(shape_subject, device=device, dtype=dtype)
|
| 468 |
+
mask2 = self._pack_latents(mask2, batch_size, num_channels_latents, height_cond*sub_number, width_cond)
|
| 469 |
+
latent_subject_ids = prepare_latent_subject_ids(height_cond, width_cond, device, dtype)
|
| 470 |
+
latent_subject_ids[:, 1] += 64 # fixed offset
|
| 471 |
+
subject_latent_image_ids = torch.concat([latent_subject_ids for _ in range(sub_number)], dim=-2)
|
| 472 |
+
latents_to_concat.append(subject_latents)
|
| 473 |
+
latents_ids_to_concat.append(subject_latent_image_ids)
|
| 474 |
+
|
| 475 |
+
# spatial
|
| 476 |
+
if condition_image is not None:
|
| 477 |
+
shape_cond = (batch_size, num_channels_latents, height_cond*cond_number, width_cond)
|
| 478 |
+
condition_image = condition_image.to(device=device, dtype=dtype)
|
| 479 |
+
image_latents = self._encode_vae_image(image=condition_image, generator=generator)
|
| 480 |
+
cond_latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height_cond*cond_number, width_cond)
|
| 481 |
+
mask3 = torch.zeros(shape_cond, device=device, dtype=dtype)
|
| 482 |
+
mask3 = self._pack_latents(mask3, batch_size, num_channels_latents, height_cond*cond_number, width_cond)
|
| 483 |
+
cond_latent_image_ids = cond_latent_image_ids
|
| 484 |
+
cond_latent_image_ids = torch.concat([cond_latent_image_ids for _ in range(cond_number)], dim=-2)
|
| 485 |
+
latents_ids_to_concat.append(cond_latent_image_ids)
|
| 486 |
+
latents_to_concat.append(cond_latents)
|
| 487 |
+
|
| 488 |
+
cond_latents = torch.concat(latents_to_concat, dim=-2)
|
| 489 |
+
latent_image_ids = torch.concat(latents_ids_to_concat, dim=-2)
|
| 490 |
+
return cond_latents, latent_image_ids, noise_latents
|
| 491 |
+
|
| 492 |
+
@property
|
| 493 |
+
def guidance_scale(self):
|
| 494 |
+
return self._guidance_scale
|
| 495 |
+
|
| 496 |
+
@property
|
| 497 |
+
def joint_attention_kwargs(self):
|
| 498 |
+
return self._joint_attention_kwargs
|
| 499 |
+
|
| 500 |
+
@property
|
| 501 |
+
def num_timesteps(self):
|
| 502 |
+
return self._num_timesteps
|
| 503 |
+
|
| 504 |
+
@property
|
| 505 |
+
def interrupt(self):
|
| 506 |
+
return self._interrupt
|
| 507 |
+
|
| 508 |
+
@torch.no_grad()
|
| 509 |
+
def __call__(
|
| 510 |
+
self,
|
| 511 |
+
prompt: Union[str, List[str]] = None,
|
| 512 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 513 |
+
height: Optional[int] = None,
|
| 514 |
+
width: Optional[int] = None,
|
| 515 |
+
num_inference_steps: int = 28,
|
| 516 |
+
timesteps: List[int] = None,
|
| 517 |
+
guidance_scale: float = 3.5,
|
| 518 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 519 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 520 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 521 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 522 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 523 |
+
output_type: Optional[str] = "pil",
|
| 524 |
+
return_dict: bool = True,
|
| 525 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 526 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 527 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 528 |
+
max_sequence_length: int = 512,
|
| 529 |
+
spatial_images=None,
|
| 530 |
+
subject_images=None,
|
| 531 |
+
cond_size=512,
|
| 532 |
+
):
|
| 533 |
+
|
| 534 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 535 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 536 |
+
self.cond_size = cond_size
|
| 537 |
+
|
| 538 |
+
# 1. Check inputs. Raise error if not correct
|
| 539 |
+
self.check_inputs(
|
| 540 |
+
prompt,
|
| 541 |
+
prompt_2,
|
| 542 |
+
height,
|
| 543 |
+
width,
|
| 544 |
+
prompt_embeds=prompt_embeds,
|
| 545 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 546 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 547 |
+
max_sequence_length=max_sequence_length,
|
| 548 |
+
)
|
| 549 |
+
|
| 550 |
+
self._guidance_scale = guidance_scale
|
| 551 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
| 552 |
+
self._interrupt = False
|
| 553 |
+
|
| 554 |
+
cond_number = len(spatial_images)
|
| 555 |
+
sub_number = len(subject_images)
|
| 556 |
+
|
| 557 |
+
if sub_number > 0:
|
| 558 |
+
subject_image_ls = []
|
| 559 |
+
for subject_image in subject_images:
|
| 560 |
+
w, h = subject_image.size[:2]
|
| 561 |
+
scale = self.cond_size / max(h, w)
|
| 562 |
+
new_h, new_w = int(h * scale), int(w * scale)
|
| 563 |
+
subject_image = self.image_processor.preprocess(subject_image, height=new_h, width=new_w)
|
| 564 |
+
subject_image = subject_image.to(dtype=torch.float32)
|
| 565 |
+
pad_h = cond_size - subject_image.shape[-2]
|
| 566 |
+
pad_w = cond_size - subject_image.shape[-1]
|
| 567 |
+
subject_image = pad(
|
| 568 |
+
subject_image,
|
| 569 |
+
padding=(int(pad_w / 2), int(pad_h / 2), int(pad_w / 2), int(pad_h / 2)),
|
| 570 |
+
fill=0
|
| 571 |
+
)
|
| 572 |
+
subject_image_ls.append(subject_image)
|
| 573 |
+
subject_image = torch.concat(subject_image_ls, dim=-2)
|
| 574 |
+
else:
|
| 575 |
+
subject_image = None
|
| 576 |
+
|
| 577 |
+
if cond_number > 0:
|
| 578 |
+
condition_image_ls = []
|
| 579 |
+
for img in spatial_images:
|
| 580 |
+
condition_image = self.image_processor.preprocess(img, height=self.cond_size, width=self.cond_size)
|
| 581 |
+
condition_image = condition_image.to(dtype=torch.float32)
|
| 582 |
+
condition_image_ls.append(condition_image)
|
| 583 |
+
condition_image = torch.concat(condition_image_ls, dim=-2)
|
| 584 |
+
else:
|
| 585 |
+
condition_image = None
|
| 586 |
+
|
| 587 |
+
# 2. Define call parameters
|
| 588 |
+
if prompt is not None and isinstance(prompt, str):
|
| 589 |
+
batch_size = 1
|
| 590 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 591 |
+
batch_size = len(prompt)
|
| 592 |
+
else:
|
| 593 |
+
batch_size = prompt_embeds.shape[0]
|
| 594 |
+
|
| 595 |
+
device = self._execution_device
|
| 596 |
+
|
| 597 |
+
lora_scale = (
|
| 598 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
| 599 |
+
)
|
| 600 |
+
(
|
| 601 |
+
prompt_embeds,
|
| 602 |
+
pooled_prompt_embeds,
|
| 603 |
+
text_ids,
|
| 604 |
+
) = self.encode_prompt(
|
| 605 |
+
prompt=prompt,
|
| 606 |
+
prompt_2=prompt_2,
|
| 607 |
+
prompt_embeds=prompt_embeds,
|
| 608 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 609 |
+
device=device,
|
| 610 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 611 |
+
max_sequence_length=max_sequence_length,
|
| 612 |
+
lora_scale=lora_scale,
|
| 613 |
+
)
|
| 614 |
+
|
| 615 |
+
# 4. Prepare latent variables
|
| 616 |
+
num_channels_latents = self.transformer.config.in_channels // 4 # 16
|
| 617 |
+
cond_latents, latent_image_ids, noise_latents = self.prepare_latents(
|
| 618 |
+
batch_size * num_images_per_prompt,
|
| 619 |
+
num_channels_latents,
|
| 620 |
+
height,
|
| 621 |
+
width,
|
| 622 |
+
prompt_embeds.dtype,
|
| 623 |
+
device,
|
| 624 |
+
generator,
|
| 625 |
+
subject_image,
|
| 626 |
+
condition_image,
|
| 627 |
+
latents,
|
| 628 |
+
cond_number,
|
| 629 |
+
sub_number
|
| 630 |
+
)
|
| 631 |
+
latents = noise_latents
|
| 632 |
+
# 5. Prepare timesteps
|
| 633 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
| 634 |
+
image_seq_len = latents.shape[1]
|
| 635 |
+
mu = calculate_shift(
|
| 636 |
+
image_seq_len,
|
| 637 |
+
self.scheduler.config.base_image_seq_len,
|
| 638 |
+
self.scheduler.config.max_image_seq_len,
|
| 639 |
+
self.scheduler.config.base_shift,
|
| 640 |
+
self.scheduler.config.max_shift,
|
| 641 |
+
)
|
| 642 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 643 |
+
self.scheduler,
|
| 644 |
+
num_inference_steps,
|
| 645 |
+
device,
|
| 646 |
+
timesteps,
|
| 647 |
+
sigmas,
|
| 648 |
+
mu=mu,
|
| 649 |
+
)
|
| 650 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 651 |
+
self._num_timesteps = len(timesteps)
|
| 652 |
+
|
| 653 |
+
# handle guidance
|
| 654 |
+
if self.transformer.config.guidance_embeds:
|
| 655 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
| 656 |
+
guidance = guidance.expand(latents.shape[0])
|
| 657 |
+
else:
|
| 658 |
+
guidance = None
|
| 659 |
+
|
| 660 |
+
## Caching conditions
|
| 661 |
+
# clean the cache
|
| 662 |
+
for name, attn_processor in self.transformer.attn_processors.items():
|
| 663 |
+
attn_processor.bank_kv.clear()
|
| 664 |
+
# cache with warmup latents
|
| 665 |
+
start_idx = latents.shape[1] - 32
|
| 666 |
+
warmup_latents = latents[:, start_idx:, :]
|
| 667 |
+
warmup_latent_ids = latent_image_ids[start_idx:, :]
|
| 668 |
+
t = torch.tensor([timesteps[0]], device=device)
|
| 669 |
+
timestep = t.expand(warmup_latents.shape[0]).to(latents.dtype)
|
| 670 |
+
_ = self.transformer(
|
| 671 |
+
hidden_states=warmup_latents,
|
| 672 |
+
cond_hidden_states=cond_latents,
|
| 673 |
+
timestep=timestep/ 1000,
|
| 674 |
+
guidance=guidance,
|
| 675 |
+
pooled_projections=pooled_prompt_embeds,
|
| 676 |
+
encoder_hidden_states=prompt_embeds,
|
| 677 |
+
txt_ids=text_ids,
|
| 678 |
+
img_ids=warmup_latent_ids,
|
| 679 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 680 |
+
return_dict=False,
|
| 681 |
+
)[0]
|
| 682 |
+
|
| 683 |
+
# 6. Denoising loop
|
| 684 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 685 |
+
for i, t in enumerate(timesteps):
|
| 686 |
+
if self.interrupt:
|
| 687 |
+
continue
|
| 688 |
+
|
| 689 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 690 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
| 691 |
+
noise_pred = self.transformer(
|
| 692 |
+
hidden_states=latents,
|
| 693 |
+
cond_hidden_states=cond_latents,
|
| 694 |
+
timestep=timestep / 1000,
|
| 695 |
+
guidance=guidance,
|
| 696 |
+
pooled_projections=pooled_prompt_embeds,
|
| 697 |
+
encoder_hidden_states=prompt_embeds,
|
| 698 |
+
txt_ids=text_ids,
|
| 699 |
+
img_ids=latent_image_ids,
|
| 700 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 701 |
+
return_dict=False,
|
| 702 |
+
)[0]
|
| 703 |
+
|
| 704 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 705 |
+
latents_dtype = latents.dtype
|
| 706 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 707 |
+
latents = latents
|
| 708 |
+
|
| 709 |
+
if latents.dtype != latents_dtype:
|
| 710 |
+
if torch.backends.mps.is_available():
|
| 711 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
| 712 |
+
latents = latents.to(latents_dtype)
|
| 713 |
+
|
| 714 |
+
if callback_on_step_end is not None:
|
| 715 |
+
callback_kwargs = {}
|
| 716 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 717 |
+
callback_kwargs[k] = locals()[k]
|
| 718 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 719 |
+
|
| 720 |
+
latents = callback_outputs.pop("latents", latents)
|
| 721 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 722 |
+
|
| 723 |
+
# call the callback, if provided
|
| 724 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 725 |
+
progress_bar.update()
|
| 726 |
+
|
| 727 |
+
if XLA_AVAILABLE:
|
| 728 |
+
xm.mark_step()
|
| 729 |
+
|
| 730 |
+
if output_type == "latent":
|
| 731 |
+
image = latents
|
| 732 |
+
|
| 733 |
+
else:
|
| 734 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
| 735 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 736 |
+
image = self.vae.decode(latents.to(dtype=self.vae.dtype), return_dict=False)[0]
|
| 737 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 738 |
+
|
| 739 |
+
# Offload all models
|
| 740 |
+
self.maybe_free_model_hooks()
|
| 741 |
+
|
| 742 |
+
if not return_dict:
|
| 743 |
+
return (image,)
|
| 744 |
+
|
| 745 |
+
return FluxPipelineOutput(images=image)
|
src/prompt_helper.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def load_text_encoders(args, class_one, class_two):
|
| 5 |
+
text_encoder_one = class_one.from_pretrained(
|
| 6 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
|
| 7 |
+
)
|
| 8 |
+
text_encoder_two = class_two.from_pretrained(
|
| 9 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant
|
| 10 |
+
)
|
| 11 |
+
return text_encoder_one, text_encoder_two
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def tokenize_prompt(tokenizer, prompt, max_sequence_length):
|
| 15 |
+
text_inputs = tokenizer(
|
| 16 |
+
prompt,
|
| 17 |
+
padding="max_length",
|
| 18 |
+
max_length=max_sequence_length,
|
| 19 |
+
truncation=True,
|
| 20 |
+
return_length=False,
|
| 21 |
+
return_overflowing_tokens=False,
|
| 22 |
+
return_tensors="pt",
|
| 23 |
+
)
|
| 24 |
+
text_input_ids = text_inputs.input_ids
|
| 25 |
+
return text_input_ids
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def tokenize_prompt_clip(tokenizer, prompt):
|
| 29 |
+
text_inputs = tokenizer(
|
| 30 |
+
prompt,
|
| 31 |
+
padding="max_length",
|
| 32 |
+
max_length=77,
|
| 33 |
+
truncation=True,
|
| 34 |
+
return_length=False,
|
| 35 |
+
return_overflowing_tokens=False,
|
| 36 |
+
return_tensors="pt",
|
| 37 |
+
)
|
| 38 |
+
text_input_ids = text_inputs.input_ids
|
| 39 |
+
return text_input_ids
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def tokenize_prompt_t5(tokenizer, prompt):
|
| 43 |
+
text_inputs = tokenizer(
|
| 44 |
+
prompt,
|
| 45 |
+
padding="max_length",
|
| 46 |
+
max_length=512,
|
| 47 |
+
truncation=True,
|
| 48 |
+
return_length=False,
|
| 49 |
+
return_overflowing_tokens=False,
|
| 50 |
+
return_tensors="pt",
|
| 51 |
+
)
|
| 52 |
+
text_input_ids = text_inputs.input_ids
|
| 53 |
+
return text_input_ids
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def _encode_prompt_with_t5(
|
| 57 |
+
text_encoder,
|
| 58 |
+
tokenizer,
|
| 59 |
+
max_sequence_length=512,
|
| 60 |
+
prompt=None,
|
| 61 |
+
num_images_per_prompt=1,
|
| 62 |
+
device=None,
|
| 63 |
+
text_input_ids=None,
|
| 64 |
+
):
|
| 65 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 66 |
+
batch_size = len(prompt)
|
| 67 |
+
|
| 68 |
+
if tokenizer is not None:
|
| 69 |
+
text_inputs = tokenizer(
|
| 70 |
+
prompt,
|
| 71 |
+
padding="max_length",
|
| 72 |
+
max_length=max_sequence_length,
|
| 73 |
+
truncation=True,
|
| 74 |
+
return_length=False,
|
| 75 |
+
return_overflowing_tokens=False,
|
| 76 |
+
return_tensors="pt",
|
| 77 |
+
)
|
| 78 |
+
text_input_ids = text_inputs.input_ids
|
| 79 |
+
else:
|
| 80 |
+
if text_input_ids is None:
|
| 81 |
+
raise ValueError("text_input_ids must be provided when the tokenizer is not specified")
|
| 82 |
+
|
| 83 |
+
prompt_embeds = text_encoder(text_input_ids.to(device))[0]
|
| 84 |
+
|
| 85 |
+
dtype = text_encoder.dtype
|
| 86 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
| 87 |
+
|
| 88 |
+
_, seq_len, _ = prompt_embeds.shape
|
| 89 |
+
|
| 90 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
| 91 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 92 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 93 |
+
|
| 94 |
+
return prompt_embeds
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def _encode_prompt_with_clip(
|
| 98 |
+
text_encoder,
|
| 99 |
+
tokenizer,
|
| 100 |
+
prompt: str,
|
| 101 |
+
device=None,
|
| 102 |
+
text_input_ids=None,
|
| 103 |
+
num_images_per_prompt: int = 1,
|
| 104 |
+
):
|
| 105 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 106 |
+
batch_size = len(prompt)
|
| 107 |
+
|
| 108 |
+
if tokenizer is not None:
|
| 109 |
+
text_inputs = tokenizer(
|
| 110 |
+
prompt,
|
| 111 |
+
padding="max_length",
|
| 112 |
+
max_length=77,
|
| 113 |
+
truncation=True,
|
| 114 |
+
return_overflowing_tokens=False,
|
| 115 |
+
return_length=False,
|
| 116 |
+
return_tensors="pt",
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
text_input_ids = text_inputs.input_ids
|
| 120 |
+
else:
|
| 121 |
+
if text_input_ids is None:
|
| 122 |
+
raise ValueError("text_input_ids must be provided when the tokenizer is not specified")
|
| 123 |
+
|
| 124 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=False)
|
| 125 |
+
|
| 126 |
+
# Use pooled output of CLIPTextModel
|
| 127 |
+
prompt_embeds = prompt_embeds.pooler_output
|
| 128 |
+
prompt_embeds = prompt_embeds.to(dtype=text_encoder.dtype, device=device)
|
| 129 |
+
|
| 130 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 131 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 132 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
| 133 |
+
|
| 134 |
+
return prompt_embeds
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def encode_prompt(
|
| 138 |
+
text_encoders,
|
| 139 |
+
tokenizers,
|
| 140 |
+
prompt: str,
|
| 141 |
+
max_sequence_length,
|
| 142 |
+
device=None,
|
| 143 |
+
num_images_per_prompt: int = 1,
|
| 144 |
+
text_input_ids_list=None,
|
| 145 |
+
):
|
| 146 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 147 |
+
dtype = text_encoders[0].dtype
|
| 148 |
+
|
| 149 |
+
pooled_prompt_embeds = _encode_prompt_with_clip(
|
| 150 |
+
text_encoder=text_encoders[0],
|
| 151 |
+
tokenizer=tokenizers[0],
|
| 152 |
+
prompt=prompt,
|
| 153 |
+
device=device if device is not None else text_encoders[0].device,
|
| 154 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 155 |
+
text_input_ids=text_input_ids_list[0] if text_input_ids_list else None,
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
prompt_embeds = _encode_prompt_with_t5(
|
| 159 |
+
text_encoder=text_encoders[1],
|
| 160 |
+
tokenizer=tokenizers[1],
|
| 161 |
+
max_sequence_length=max_sequence_length,
|
| 162 |
+
prompt=prompt,
|
| 163 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 164 |
+
device=device if device is not None else text_encoders[1].device,
|
| 165 |
+
text_input_ids=text_input_ids_list[1] if text_input_ids_list else None,
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
| 169 |
+
|
| 170 |
+
return prompt_embeds, pooled_prompt_embeds, text_ids
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def encode_token_ids(text_encoders, tokens, accelerator, num_images_per_prompt=1, device=None):
|
| 174 |
+
text_encoder_clip = text_encoders[0]
|
| 175 |
+
text_encoder_t5 = text_encoders[1]
|
| 176 |
+
tokens_clip, tokens_t5 = tokens[0], tokens[1]
|
| 177 |
+
batch_size = tokens_clip.shape[0]
|
| 178 |
+
|
| 179 |
+
if device == "cpu":
|
| 180 |
+
device = "cpu"
|
| 181 |
+
else:
|
| 182 |
+
device = accelerator.device
|
| 183 |
+
|
| 184 |
+
# clip
|
| 185 |
+
prompt_embeds = text_encoder_clip(tokens_clip.to(device), output_hidden_states=False)
|
| 186 |
+
# Use pooled output of CLIPTextModel
|
| 187 |
+
prompt_embeds = prompt_embeds.pooler_output
|
| 188 |
+
prompt_embeds = prompt_embeds.to(dtype=text_encoder_clip.dtype, device=accelerator.device)
|
| 189 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 190 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 191 |
+
pooled_prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
| 192 |
+
pooled_prompt_embeds = pooled_prompt_embeds.to(dtype=text_encoder_clip.dtype, device=accelerator.device)
|
| 193 |
+
|
| 194 |
+
# t5
|
| 195 |
+
prompt_embeds = text_encoder_t5(tokens_t5.to(device))[0]
|
| 196 |
+
dtype = text_encoder_t5.dtype
|
| 197 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=accelerator.device)
|
| 198 |
+
_, seq_len, _ = prompt_embeds.shape
|
| 199 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
| 200 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 201 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 202 |
+
|
| 203 |
+
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=accelerator.device, dtype=dtype)
|
| 204 |
+
|
| 205 |
+
return prompt_embeds, pooled_prompt_embeds, text_ids
|
src/transformer_flux.py
ADDED
|
@@ -0,0 +1,583 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
|
| 8 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 9 |
+
from diffusers.loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin
|
| 10 |
+
from diffusers.models.attention import FeedForward
|
| 11 |
+
from diffusers.models.attention_processor import (
|
| 12 |
+
Attention,
|
| 13 |
+
AttentionProcessor,
|
| 14 |
+
FluxAttnProcessor2_0,
|
| 15 |
+
FluxAttnProcessor2_0_NPU,
|
| 16 |
+
FusedFluxAttnProcessor2_0,
|
| 17 |
+
)
|
| 18 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 19 |
+
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle
|
| 20 |
+
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
| 21 |
+
from diffusers.utils.import_utils import is_torch_npu_available
|
| 22 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
| 23 |
+
from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
|
| 24 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
| 25 |
+
|
| 26 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 27 |
+
|
| 28 |
+
@maybe_allow_in_graph
|
| 29 |
+
class FluxSingleTransformerBlock(nn.Module):
|
| 30 |
+
|
| 31 |
+
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
|
| 32 |
+
super().__init__()
|
| 33 |
+
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
| 34 |
+
|
| 35 |
+
self.norm = AdaLayerNormZeroSingle(dim)
|
| 36 |
+
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
| 37 |
+
self.act_mlp = nn.GELU(approximate="tanh")
|
| 38 |
+
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
| 39 |
+
|
| 40 |
+
if is_torch_npu_available():
|
| 41 |
+
processor = FluxAttnProcessor2_0_NPU()
|
| 42 |
+
else:
|
| 43 |
+
processor = FluxAttnProcessor2_0()
|
| 44 |
+
self.attn = Attention(
|
| 45 |
+
query_dim=dim,
|
| 46 |
+
cross_attention_dim=None,
|
| 47 |
+
dim_head=attention_head_dim,
|
| 48 |
+
heads=num_attention_heads,
|
| 49 |
+
out_dim=dim,
|
| 50 |
+
bias=True,
|
| 51 |
+
processor=processor,
|
| 52 |
+
qk_norm="rms_norm",
|
| 53 |
+
eps=1e-6,
|
| 54 |
+
pre_only=True,
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
def forward(
|
| 58 |
+
self,
|
| 59 |
+
hidden_states: torch.Tensor,
|
| 60 |
+
cond_hidden_states: torch.Tensor,
|
| 61 |
+
temb: torch.Tensor,
|
| 62 |
+
cond_temb: torch.Tensor,
|
| 63 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 64 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 65 |
+
) -> torch.Tensor:
|
| 66 |
+
use_cond = cond_hidden_states is not None
|
| 67 |
+
|
| 68 |
+
residual = hidden_states
|
| 69 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
| 70 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
| 71 |
+
|
| 72 |
+
if use_cond:
|
| 73 |
+
residual_cond = cond_hidden_states
|
| 74 |
+
norm_cond_hidden_states, cond_gate = self.norm(cond_hidden_states, emb=cond_temb)
|
| 75 |
+
mlp_cond_hidden_states = self.act_mlp(self.proj_mlp(norm_cond_hidden_states))
|
| 76 |
+
|
| 77 |
+
norm_hidden_states_concat = torch.concat([norm_hidden_states, norm_cond_hidden_states], dim=-2)
|
| 78 |
+
|
| 79 |
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
| 80 |
+
attn_output = self.attn(
|
| 81 |
+
hidden_states=norm_hidden_states_concat,
|
| 82 |
+
image_rotary_emb=image_rotary_emb,
|
| 83 |
+
use_cond=use_cond,
|
| 84 |
+
**joint_attention_kwargs,
|
| 85 |
+
)
|
| 86 |
+
if use_cond:
|
| 87 |
+
attn_output, cond_attn_output = attn_output
|
| 88 |
+
|
| 89 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
| 90 |
+
gate = gate.unsqueeze(1)
|
| 91 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
| 92 |
+
hidden_states = residual + hidden_states
|
| 93 |
+
|
| 94 |
+
if use_cond:
|
| 95 |
+
condition_latents = torch.cat([cond_attn_output, mlp_cond_hidden_states], dim=2)
|
| 96 |
+
cond_gate = cond_gate.unsqueeze(1)
|
| 97 |
+
condition_latents = cond_gate * self.proj_out(condition_latents)
|
| 98 |
+
condition_latents = residual_cond + condition_latents
|
| 99 |
+
|
| 100 |
+
if hidden_states.dtype == torch.float16:
|
| 101 |
+
hidden_states = hidden_states.clip(-65504, 65504)
|
| 102 |
+
|
| 103 |
+
return hidden_states, condition_latents if use_cond else None
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
@maybe_allow_in_graph
|
| 107 |
+
class FluxTransformerBlock(nn.Module):
|
| 108 |
+
def __init__(
|
| 109 |
+
self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6
|
| 110 |
+
):
|
| 111 |
+
super().__init__()
|
| 112 |
+
|
| 113 |
+
self.norm1 = AdaLayerNormZero(dim)
|
| 114 |
+
|
| 115 |
+
self.norm1_context = AdaLayerNormZero(dim)
|
| 116 |
+
|
| 117 |
+
if hasattr(F, "scaled_dot_product_attention"):
|
| 118 |
+
processor = FluxAttnProcessor2_0()
|
| 119 |
+
else:
|
| 120 |
+
raise ValueError(
|
| 121 |
+
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
| 122 |
+
)
|
| 123 |
+
self.attn = Attention(
|
| 124 |
+
query_dim=dim,
|
| 125 |
+
cross_attention_dim=None,
|
| 126 |
+
added_kv_proj_dim=dim,
|
| 127 |
+
dim_head=attention_head_dim,
|
| 128 |
+
heads=num_attention_heads,
|
| 129 |
+
out_dim=dim,
|
| 130 |
+
context_pre_only=False,
|
| 131 |
+
bias=True,
|
| 132 |
+
processor=processor,
|
| 133 |
+
qk_norm=qk_norm,
|
| 134 |
+
eps=eps,
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 138 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 139 |
+
|
| 140 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 141 |
+
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 142 |
+
|
| 143 |
+
# let chunk size default to None
|
| 144 |
+
self._chunk_size = None
|
| 145 |
+
self._chunk_dim = 0
|
| 146 |
+
|
| 147 |
+
def forward(
|
| 148 |
+
self,
|
| 149 |
+
hidden_states: torch.Tensor,
|
| 150 |
+
cond_hidden_states: torch.Tensor,
|
| 151 |
+
encoder_hidden_states: torch.Tensor,
|
| 152 |
+
temb: torch.Tensor,
|
| 153 |
+
cond_temb: torch.Tensor,
|
| 154 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 155 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 156 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 157 |
+
use_cond = cond_hidden_states is not None
|
| 158 |
+
|
| 159 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
| 160 |
+
if use_cond:
|
| 161 |
+
(
|
| 162 |
+
norm_cond_hidden_states,
|
| 163 |
+
cond_gate_msa,
|
| 164 |
+
cond_shift_mlp,
|
| 165 |
+
cond_scale_mlp,
|
| 166 |
+
cond_gate_mlp,
|
| 167 |
+
) = self.norm1(cond_hidden_states, emb=cond_temb)
|
| 168 |
+
|
| 169 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
| 170 |
+
encoder_hidden_states, emb=temb
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
norm_hidden_states = torch.concat([norm_hidden_states, norm_cond_hidden_states], dim=-2)
|
| 174 |
+
|
| 175 |
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
| 176 |
+
# Attention.
|
| 177 |
+
attention_outputs = self.attn(
|
| 178 |
+
hidden_states=norm_hidden_states,
|
| 179 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
| 180 |
+
image_rotary_emb=image_rotary_emb,
|
| 181 |
+
use_cond=use_cond,
|
| 182 |
+
**joint_attention_kwargs,
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
attn_output, context_attn_output = attention_outputs[:2]
|
| 186 |
+
cond_attn_output = attention_outputs[2] if use_cond else None
|
| 187 |
+
|
| 188 |
+
# Process attention outputs for the `hidden_states`.
|
| 189 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 190 |
+
hidden_states = hidden_states + attn_output
|
| 191 |
+
|
| 192 |
+
if use_cond:
|
| 193 |
+
cond_attn_output = cond_gate_msa.unsqueeze(1) * cond_attn_output
|
| 194 |
+
cond_hidden_states = cond_hidden_states + cond_attn_output
|
| 195 |
+
|
| 196 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 197 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 198 |
+
|
| 199 |
+
if use_cond:
|
| 200 |
+
norm_cond_hidden_states = self.norm2(cond_hidden_states)
|
| 201 |
+
norm_cond_hidden_states = (
|
| 202 |
+
norm_cond_hidden_states * (1 + cond_scale_mlp[:, None])
|
| 203 |
+
+ cond_shift_mlp[:, None]
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
ff_output = self.ff(norm_hidden_states)
|
| 207 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 208 |
+
hidden_states = hidden_states + ff_output
|
| 209 |
+
|
| 210 |
+
if use_cond:
|
| 211 |
+
cond_ff_output = self.ff(norm_cond_hidden_states)
|
| 212 |
+
cond_ff_output = cond_gate_mlp.unsqueeze(1) * cond_ff_output
|
| 213 |
+
cond_hidden_states = cond_hidden_states + cond_ff_output
|
| 214 |
+
|
| 215 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
| 216 |
+
|
| 217 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
| 218 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
| 219 |
+
|
| 220 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
| 221 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
| 222 |
+
|
| 223 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
| 224 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
| 225 |
+
if encoder_hidden_states.dtype == torch.float16:
|
| 226 |
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
| 227 |
+
|
| 228 |
+
return encoder_hidden_states, hidden_states, cond_hidden_states if use_cond else None
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
class FluxTransformer2DModel(
|
| 232 |
+
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, FluxTransformer2DLoadersMixin
|
| 233 |
+
):
|
| 234 |
+
_supports_gradient_checkpointing = True
|
| 235 |
+
_no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]
|
| 236 |
+
|
| 237 |
+
@register_to_config
|
| 238 |
+
def __init__(
|
| 239 |
+
self,
|
| 240 |
+
patch_size: int = 1,
|
| 241 |
+
in_channels: int = 64,
|
| 242 |
+
out_channels: Optional[int] = None,
|
| 243 |
+
num_layers: int = 19,
|
| 244 |
+
num_single_layers: int = 38,
|
| 245 |
+
attention_head_dim: int = 128,
|
| 246 |
+
num_attention_heads: int = 24,
|
| 247 |
+
joint_attention_dim: int = 4096,
|
| 248 |
+
pooled_projection_dim: int = 768,
|
| 249 |
+
guidance_embeds: bool = False,
|
| 250 |
+
axes_dims_rope: Tuple[int] = (16, 56, 56),
|
| 251 |
+
):
|
| 252 |
+
super().__init__()
|
| 253 |
+
self.out_channels = out_channels or in_channels
|
| 254 |
+
self.inner_dim = num_attention_heads * attention_head_dim
|
| 255 |
+
|
| 256 |
+
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
| 257 |
+
|
| 258 |
+
text_time_guidance_cls = (
|
| 259 |
+
CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
|
| 260 |
+
)
|
| 261 |
+
self.time_text_embed = text_time_guidance_cls(
|
| 262 |
+
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
|
| 266 |
+
self.x_embedder = nn.Linear(in_channels, self.inner_dim)
|
| 267 |
+
|
| 268 |
+
self.transformer_blocks = nn.ModuleList(
|
| 269 |
+
[
|
| 270 |
+
FluxTransformerBlock(
|
| 271 |
+
dim=self.inner_dim,
|
| 272 |
+
num_attention_heads=num_attention_heads,
|
| 273 |
+
attention_head_dim=attention_head_dim,
|
| 274 |
+
)
|
| 275 |
+
for _ in range(num_layers)
|
| 276 |
+
]
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
self.single_transformer_blocks = nn.ModuleList(
|
| 280 |
+
[
|
| 281 |
+
FluxSingleTransformerBlock(
|
| 282 |
+
dim=self.inner_dim,
|
| 283 |
+
num_attention_heads=num_attention_heads,
|
| 284 |
+
attention_head_dim=attention_head_dim,
|
| 285 |
+
)
|
| 286 |
+
for _ in range(num_single_layers)
|
| 287 |
+
]
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
| 291 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
| 292 |
+
|
| 293 |
+
self.gradient_checkpointing = False
|
| 294 |
+
|
| 295 |
+
@property
|
| 296 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 297 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 298 |
+
r"""
|
| 299 |
+
Returns:
|
| 300 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 301 |
+
indexed by its weight name.
|
| 302 |
+
"""
|
| 303 |
+
# set recursively
|
| 304 |
+
processors = {}
|
| 305 |
+
|
| 306 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 307 |
+
if hasattr(module, "get_processor"):
|
| 308 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 309 |
+
|
| 310 |
+
for sub_name, child in module.named_children():
|
| 311 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 312 |
+
|
| 313 |
+
return processors
|
| 314 |
+
|
| 315 |
+
for name, module in self.named_children():
|
| 316 |
+
fn_recursive_add_processors(name, module, processors)
|
| 317 |
+
|
| 318 |
+
return processors
|
| 319 |
+
|
| 320 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 321 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 322 |
+
r"""
|
| 323 |
+
Sets the attention processor to use to compute attention.
|
| 324 |
+
|
| 325 |
+
Parameters:
|
| 326 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 327 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 328 |
+
for **all** `Attention` layers.
|
| 329 |
+
|
| 330 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 331 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 332 |
+
|
| 333 |
+
"""
|
| 334 |
+
count = len(self.attn_processors.keys())
|
| 335 |
+
|
| 336 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 337 |
+
raise ValueError(
|
| 338 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 339 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 343 |
+
if hasattr(module, "set_processor"):
|
| 344 |
+
if not isinstance(processor, dict):
|
| 345 |
+
module.set_processor(processor)
|
| 346 |
+
else:
|
| 347 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 348 |
+
|
| 349 |
+
for sub_name, child in module.named_children():
|
| 350 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 351 |
+
|
| 352 |
+
for name, module in self.named_children():
|
| 353 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 354 |
+
|
| 355 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0
|
| 356 |
+
def fuse_qkv_projections(self):
|
| 357 |
+
"""
|
| 358 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
| 359 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
| 360 |
+
|
| 361 |
+
<Tip warning={true}>
|
| 362 |
+
|
| 363 |
+
This API is 🧪 experimental.
|
| 364 |
+
|
| 365 |
+
</Tip>
|
| 366 |
+
"""
|
| 367 |
+
self.original_attn_processors = None
|
| 368 |
+
|
| 369 |
+
for _, attn_processor in self.attn_processors.items():
|
| 370 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
| 371 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
| 372 |
+
|
| 373 |
+
self.original_attn_processors = self.attn_processors
|
| 374 |
+
|
| 375 |
+
for module in self.modules():
|
| 376 |
+
if isinstance(module, Attention):
|
| 377 |
+
module.fuse_projections(fuse=True)
|
| 378 |
+
|
| 379 |
+
self.set_attn_processor(FusedFluxAttnProcessor2_0())
|
| 380 |
+
|
| 381 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
| 382 |
+
def unfuse_qkv_projections(self):
|
| 383 |
+
"""Disables the fused QKV projection if enabled.
|
| 384 |
+
|
| 385 |
+
<Tip warning={true}>
|
| 386 |
+
|
| 387 |
+
This API is 🧪 experimental.
|
| 388 |
+
|
| 389 |
+
</Tip>
|
| 390 |
+
|
| 391 |
+
"""
|
| 392 |
+
if self.original_attn_processors is not None:
|
| 393 |
+
self.set_attn_processor(self.original_attn_processors)
|
| 394 |
+
|
| 395 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 396 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 397 |
+
module.gradient_checkpointing = value
|
| 398 |
+
|
| 399 |
+
def forward(
|
| 400 |
+
self,
|
| 401 |
+
hidden_states: torch.Tensor,
|
| 402 |
+
cond_hidden_states: torch.Tensor = None,
|
| 403 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 404 |
+
pooled_projections: torch.Tensor = None,
|
| 405 |
+
timestep: torch.LongTensor = None,
|
| 406 |
+
img_ids: torch.Tensor = None,
|
| 407 |
+
txt_ids: torch.Tensor = None,
|
| 408 |
+
guidance: torch.Tensor = None,
|
| 409 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 410 |
+
controlnet_block_samples=None,
|
| 411 |
+
controlnet_single_block_samples=None,
|
| 412 |
+
return_dict: bool = True,
|
| 413 |
+
controlnet_blocks_repeat: bool = False,
|
| 414 |
+
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
| 415 |
+
if cond_hidden_states is not None:
|
| 416 |
+
use_condition = True
|
| 417 |
+
else:
|
| 418 |
+
use_condition = False
|
| 419 |
+
|
| 420 |
+
if joint_attention_kwargs is not None:
|
| 421 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
| 422 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
| 423 |
+
else:
|
| 424 |
+
lora_scale = 1.0
|
| 425 |
+
|
| 426 |
+
if USE_PEFT_BACKEND:
|
| 427 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 428 |
+
scale_lora_layers(self, lora_scale)
|
| 429 |
+
else:
|
| 430 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
| 431 |
+
logger.warning(
|
| 432 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
hidden_states = self.x_embedder(hidden_states)
|
| 436 |
+
cond_hidden_states = self.x_embedder(cond_hidden_states)
|
| 437 |
+
|
| 438 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
| 439 |
+
if guidance is not None:
|
| 440 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
| 441 |
+
else:
|
| 442 |
+
guidance = None
|
| 443 |
+
|
| 444 |
+
temb = (
|
| 445 |
+
self.time_text_embed(timestep, pooled_projections)
|
| 446 |
+
if guidance is None
|
| 447 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
cond_temb = (
|
| 451 |
+
self.time_text_embed(torch.ones_like(timestep) * 0, pooled_projections)
|
| 452 |
+
if guidance is None
|
| 453 |
+
else self.time_text_embed(
|
| 454 |
+
torch.ones_like(timestep) * 0, guidance, pooled_projections
|
| 455 |
+
)
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
| 459 |
+
|
| 460 |
+
if txt_ids.ndim == 3:
|
| 461 |
+
logger.warning(
|
| 462 |
+
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
| 463 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
| 464 |
+
)
|
| 465 |
+
txt_ids = txt_ids[0]
|
| 466 |
+
if img_ids.ndim == 3:
|
| 467 |
+
logger.warning(
|
| 468 |
+
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
| 469 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
| 470 |
+
)
|
| 471 |
+
img_ids = img_ids[0]
|
| 472 |
+
|
| 473 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
| 474 |
+
image_rotary_emb = self.pos_embed(ids)
|
| 475 |
+
|
| 476 |
+
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
|
| 477 |
+
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
|
| 478 |
+
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
|
| 479 |
+
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
|
| 480 |
+
|
| 481 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 482 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 483 |
+
|
| 484 |
+
def create_custom_forward(module, return_dict=None):
|
| 485 |
+
def custom_forward(*inputs):
|
| 486 |
+
if return_dict is not None:
|
| 487 |
+
return module(*inputs, return_dict=return_dict)
|
| 488 |
+
else:
|
| 489 |
+
return module(*inputs)
|
| 490 |
+
|
| 491 |
+
return custom_forward
|
| 492 |
+
|
| 493 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 494 |
+
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
| 495 |
+
create_custom_forward(block),
|
| 496 |
+
hidden_states,
|
| 497 |
+
encoder_hidden_states,
|
| 498 |
+
temb,
|
| 499 |
+
image_rotary_emb,
|
| 500 |
+
cond_temb=cond_temb if use_condition else None,
|
| 501 |
+
cond_hidden_states=cond_hidden_states if use_condition else None,
|
| 502 |
+
**ckpt_kwargs,
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
+
else:
|
| 506 |
+
encoder_hidden_states, hidden_states, cond_hidden_states = block(
|
| 507 |
+
hidden_states=hidden_states,
|
| 508 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 509 |
+
cond_hidden_states=cond_hidden_states if use_condition else None,
|
| 510 |
+
temb=temb,
|
| 511 |
+
cond_temb=cond_temb if use_condition else None,
|
| 512 |
+
image_rotary_emb=image_rotary_emb,
|
| 513 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 514 |
+
)
|
| 515 |
+
|
| 516 |
+
# controlnet residual
|
| 517 |
+
if controlnet_block_samples is not None:
|
| 518 |
+
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
| 519 |
+
interval_control = int(np.ceil(interval_control))
|
| 520 |
+
# For Xlabs ControlNet.
|
| 521 |
+
if controlnet_blocks_repeat:
|
| 522 |
+
hidden_states = (
|
| 523 |
+
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
|
| 524 |
+
)
|
| 525 |
+
else:
|
| 526 |
+
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
| 527 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
| 528 |
+
|
| 529 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
| 530 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 531 |
+
|
| 532 |
+
def create_custom_forward(module, return_dict=None):
|
| 533 |
+
def custom_forward(*inputs):
|
| 534 |
+
if return_dict is not None:
|
| 535 |
+
return module(*inputs, return_dict=return_dict)
|
| 536 |
+
else:
|
| 537 |
+
return module(*inputs)
|
| 538 |
+
|
| 539 |
+
return custom_forward
|
| 540 |
+
|
| 541 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 542 |
+
hidden_states, cond_hidden_states = torch.utils.checkpoint.checkpoint(
|
| 543 |
+
create_custom_forward(block),
|
| 544 |
+
hidden_states,
|
| 545 |
+
temb,
|
| 546 |
+
image_rotary_emb,
|
| 547 |
+
cond_temb=cond_temb if use_condition else None,
|
| 548 |
+
cond_hidden_states=cond_hidden_states if use_condition else None,
|
| 549 |
+
**ckpt_kwargs,
|
| 550 |
+
)
|
| 551 |
+
|
| 552 |
+
else:
|
| 553 |
+
hidden_states, cond_hidden_states = block(
|
| 554 |
+
hidden_states=hidden_states,
|
| 555 |
+
cond_hidden_states=cond_hidden_states if use_condition else None,
|
| 556 |
+
temb=temb,
|
| 557 |
+
cond_temb=cond_temb if use_condition else None,
|
| 558 |
+
image_rotary_emb=image_rotary_emb,
|
| 559 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 560 |
+
)
|
| 561 |
+
|
| 562 |
+
# controlnet residual
|
| 563 |
+
if controlnet_single_block_samples is not None:
|
| 564 |
+
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
| 565 |
+
interval_control = int(np.ceil(interval_control))
|
| 566 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
| 567 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
| 568 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
| 569 |
+
)
|
| 570 |
+
|
| 571 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
| 572 |
+
|
| 573 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
| 574 |
+
output = self.proj_out(hidden_states)
|
| 575 |
+
|
| 576 |
+
if USE_PEFT_BACKEND:
|
| 577 |
+
# remove `lora_scale` from each PEFT layer
|
| 578 |
+
unscale_lora_layers(self, lora_scale)
|
| 579 |
+
|
| 580 |
+
if not return_dict:
|
| 581 |
+
return (output,)
|
| 582 |
+
|
| 583 |
+
return Transformer2DModelOutput(sample=output)
|
test_imgs/00.png
ADDED
|
Git LFS Details
|
test_imgs/02.png
ADDED
|
Git LFS Details
|
test_imgs/03.png
ADDED
|
Git LFS Details
|
test_imgs/04.png
ADDED
|
Git LFS Details
|
test_imgs/06.png
ADDED
|
Git LFS Details
|
test_imgs/07.png
ADDED
|
Git LFS Details
|
test_imgs/08.png
ADDED
|
Git LFS Details
|
test_imgs/09.png
ADDED
|
Git LFS Details
|