import openai import numpy as np from tempfile import NamedTemporaryFile import copy import shapely from shapely.geometry import * from shapely.affinity import * from omegaconf import OmegaConf from moviepy.editor import ImageSequenceClip import gradio as gr from lmp import LMP, LMPFGen from sim import PickPlaceEnv, LMP_wrapper from consts import ALL_BLOCKS, ALL_BOWLS class DemoRunner: def __init__(self): self._cfg = OmegaConf.to_container(OmegaConf.load('cfg.yaml'), resolve=True) self._env = None self._model_name = '' def make_LMP(self, env): # LMP env wrapper cfg = copy.deepcopy(self._cfg) cfg['env'] = { 'init_objs': list(env.obj_name_to_id.keys()), 'coords': cfg['tabletop_coords'] } for vs in cfg['lmps'].values(): vs['engine'] = self._model_name LMP_env = LMP_wrapper(env, cfg) # creating APIs that the LMPs can interact with fixed_vars = { 'np': np } fixed_vars.update({ name: eval(name) for name in shapely.geometry.__all__ + shapely.affinity.__all__ }) variable_vars = { k: getattr(LMP_env, k) for k in [ 'get_bbox', 'get_obj_pos', 'get_color', 'is_obj_visible', 'denormalize_xy', 'put_first_on_second', 'get_obj_names', 'get_corner_name', 'get_side_name', ] } variable_vars['say'] = lambda msg: print(f'robot says: {msg}') # creating the function-generating LMP lmp_fgen = LMPFGen(cfg['lmps']['fgen'], fixed_vars, variable_vars) # creating other low-level LMPs variable_vars.update({ k: LMP(k, cfg['lmps'][k], lmp_fgen, fixed_vars, variable_vars) for k in ['parse_obj_name', 'parse_position', 'parse_question', 'transform_shape_pts'] }) # creating the LMP that deals w/ high-level language commands lmp_tabletop_ui = LMP( 'tabletop_ui', cfg['lmps']['tabletop_ui'], lmp_fgen, fixed_vars, variable_vars ) return lmp_tabletop_ui def setup(self, api_key, model_name, n_blocks, n_bowls): openai.api_key = api_key self._model_name = model_name self._env = PickPlaceEnv(render=True, high_res=False, high_frame_rate=False) block_list = np.random.choice(ALL_BLOCKS, size=n_blocks, replace=False).tolist() bowl_list = np.random.choice(ALL_BOWLS, size=n_bowls, replace=False).tolist() obj_list = block_list + bowl_list self._env.reset(obj_list) self._lmp_tabletop_ui = self.make_LMP(self._env) info = '## Available objects: \n- ' + '\n- '.join(obj_list) img = self._env.get_camera_image() return info, img def run(self, instruction): if self._env is None: return 'Please run setup first' self._env.cache_video = [] self._lmp_tabletop_ui(instruction, f'objects = {self._env.object_list}') video_file_name = '' if self._env.cache_video: rendered_clip = ImageSequenceClip(self._env.cache_video, fps=25) video_file_name = NamedTemporaryFile(suffix='.mp4', delete=False).name rendered_clip.write_videofile(video_file_name, fps=25) return 'Done', video_file_name if __name__ == '__main__': demo_runner = DemoRunner() demo = gr.Blocks() with demo: with gr.Row(): with gr.Column(): with gr.Row(): inp_api_key = gr.Textbox(label='OpenAI API Key', lines=1, value='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') inp_model_name = gr.Dropdown(label='Model Name', choices=['code-davinci-002', 'text-davinci-002'], value='code-davinci-002') with gr.Row(): inp_n_blocks = gr.Slider(label='Num Blocks', minimum=0, maximum=3, value=3, step=1) inp_n_bowls = gr.Slider(label='Num Bowls', minimum=0, maximum=3, value=3, step=1) btn_setup = gr.Button("1) Setup/Reset Env") info_setup = gr.Markdown(label='Setup Info') with gr.Column(): img_setup = gr.Image(label='Setup Image') with gr.Row(): with gr.Column(): inp_instruction = gr.Textbox(label='Instruction', lines=1) btn_run = gr.Button("2) Run Instruction") info_run = gr.Label(label='Run Info') with gr.Column(): video_run = gr.Video(label='Run Video') btn_setup.click( demo_runner.setup, inputs=[inp_api_key, inp_model_name, inp_n_blocks, inp_n_bowls], outputs=[info_setup, img_setup] ) btn_run.click( demo_runner.run, inputs=[inp_instruction], outputs=[info_run, video_run] ) demo.launch()