import openai import numpy as np from tempfile import NamedTemporaryFile import copy import shapely from shapely.geometry import * from shapely.affinity import * from omegaconf import OmegaConf from moviepy.editor import ImageSequenceClip import gradio as gr from lmp import LMP, LMPFGen from sim import PickPlaceEnv, LMP_wrapper from consts import ALL_BLOCKS, ALL_BOWLS from md_logger import MarkdownLogger class DemoRunner: def __init__(self): self._cfg = OmegaConf.to_container(OmegaConf.load('cfg.yaml'), resolve=True) self._env = None self._model_name = '' self._md_logger = MarkdownLogger() def make_LMP(self, env): # LMP env wrapper cfg = copy.deepcopy(self._cfg) cfg['env'] = { 'init_objs': list(env.obj_name_to_id.keys()), 'coords': cfg['tabletop_coords'] } for vs in cfg['lmps'].values(): vs['engine'] = self._model_name LMP_env = LMP_wrapper(env, cfg) # creating APIs that the LMPs can interact with fixed_vars = { 'np': np } fixed_vars.update({ name: eval(name) for name in shapely.geometry.__all__ + shapely.affinity.__all__ }) variable_vars = { k: getattr(LMP_env, k) for k in [ 'get_bbox', 'get_obj_pos', 'get_color', 'is_obj_visible', 'denormalize_xy', 'put_first_on_second', 'get_obj_names', 'get_corner_name', 'get_side_name', ] } variable_vars['say'] = lambda msg: self._md_logger.log_text(f'Robot says: "{msg}"') # creating the function-generating LMP lmp_fgen = LMPFGen(cfg['lmps']['fgen'], fixed_vars, variable_vars, self._md_logger) # creating other low-level LMPs variable_vars.update({ k: LMP(k, cfg['lmps'][k], lmp_fgen, fixed_vars, variable_vars, self._md_logger) for k in ['parse_obj_name', 'parse_position', 'parse_question', 'transform_shape_pts'] }) # creating the LMP that deals w/ high-level language commands lmp_tabletop_ui = LMP( 'tabletop_ui', cfg['lmps']['tabletop_ui'], lmp_fgen, fixed_vars, variable_vars, self._md_logger ) return lmp_tabletop_ui def setup(self, api_key, model_name, n_blocks, n_bowls): openai.api_key = api_key self._model_name = model_name self._env = PickPlaceEnv(render=True, high_res=True, high_frame_rate=False) block_list = np.random.choice(ALL_BLOCKS, size=n_blocks, replace=False).tolist() bowl_list = np.random.choice(ALL_BOWLS, size=n_bowls, replace=False).tolist() obj_list = block_list + bowl_list self._env.reset(obj_list) self._lmp_tabletop_ui = self.make_LMP(self._env) info = '### Available Objects: \n- ' + '\n- '.join(obj_list) img = self._env.get_camera_image() return info, img def run(self, instruction): if self._env is None: return 'Please run setup first!', None, None self._env.cache_video = [] self._md_logger.clear() try: self._lmp_tabletop_ui(instruction, f'objects = {self._env.object_list}') except Exception as e: return str(e), None, None video_file_name = None if self._env.cache_video: rendered_clip = ImageSequenceClip(self._env.cache_video, fps=25) video_file_name = NamedTemporaryFile(suffix='.mp4').name rendered_clip.write_videofile(video_file_name, fps=25) return self._md_logger.get_log(), self._env.get_camera_image(), video_file_name def setup(api_key, model_name, n_blocks, n_bowls): if not api_key: return 'Please enter your OpenAI API key!', None if n_blocks + n_bowls == 0: return 'Please select at least one object!', None demo_runner = DemoRunner() info, img = demo_runner.setup(api_key, model_name, n_blocks, n_bowls) return info, img, demo_runner def run(instruction, demo_runner): return demo_runner.run(instruction) if __name__ == '__main__': with open('README.md', 'r') as f: for _ in range(12): next(f) readme_text = f.read() with gr.Blocks() as demo: state = gr.State(None) gr.Markdown(readme_text) gr.Markdown('# Interactive Demo') with gr.Row(): with gr.Column(): with gr.Row(): inp_api_key = gr.Textbox(label='OpenAI API Key (this is not stored anywhere)', lines=1) inp_model_name = gr.Dropdown(label='Model Name', choices=['code-davinci-002', 'text-davinci-002'], value='code-davinci-002') with gr.Row(): inp_n_blocks = gr.Slider(label='Number of Blocks', minimum=0, maximum=4, value=3, step=1) inp_n_bowls = gr.Slider(label='Number of Bowls', minimum=0, maximum=4, value=3, step=1) btn_setup = gr.Button("Setup/Reset Simulation") info_setup = gr.Markdown(label='Setup Info') with gr.Column(): img_setup = gr.Image(label='Current Simulation') with gr.Row(): with gr.Column(): inp_instruction = gr.Textbox(label='Instruction', lines=1) btn_run = gr.Button("Run (this may take 20+ seconds)") info_run = gr.Markdown(label='Generated Code') with gr.Column(): video_run = gr.Video(label='Video of Last Instruction') btn_setup.click( setup, inputs=[inp_api_key, inp_model_name, inp_n_blocks, inp_n_bowls], outputs=[info_setup, img_setup, state] ) btn_run.click( run, inputs=[inp_instruction, state], outputs=[info_run, img_setup, video_run] ) demo.launch()