Spaces:
Runtime error
Runtime error
| import subprocess | |
| subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| from huggingface_hub import snapshot_download, hf_hub_download | |
| snapshot_download( | |
| repo_id="Wan-AI/Wan2.1-T2V-1.3B", | |
| local_dir="wan_models/Wan2.1-T2V-1.3B", | |
| local_dir_use_symlinks=False, | |
| resume_download=True, | |
| repo_type="model" | |
| ) | |
| hf_hub_download( | |
| repo_id="gdhe17/Self-Forcing", | |
| filename="checkpoints/self_forcing_dmd.pt", | |
| local_dir=".", | |
| local_dir_use_symlinks=False | |
| ) | |
| import os | |
| import re | |
| import random | |
| import argparse | |
| import hashlib | |
| import urllib.request | |
| from PIL import Image | |
| import spaces | |
| import numpy as np | |
| import torch | |
| import gradio as gr | |
| from omegaconf import OmegaConf | |
| from tqdm import tqdm | |
| import imageio # Added for final video rendering | |
| # FastRTC imports | |
| from fastrtc import WebRTC, get_cloudflare_turn_credentials | |
| from fastrtc.utils import AdditionalOutputs #, CloseStream | |
| # Original project imports | |
| from pipeline import CausalInferencePipeline | |
| from demo_utils.constant import ZERO_VAE_CACHE | |
| from demo_utils.vae_block3 import VAEDecoderWrapper | |
| from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder | |
| # from demo_utils.memory import gpu, get_cuda_free_memory_gb, DynamicSwapInstaller | |
| # --- Argument Parsing --- | |
| parser = argparse.ArgumentParser(description="Gradio Demo for Self-Forcing with FastRTC") | |
| parser.add_argument('--port', type=int, default=7860, help="Port to run the Gradio app on.") | |
| parser.add_argument('--host', type=str, default='0.0.0.0', help="Host to bind the Gradio app to.") | |
| parser.add_argument("--checkpoint_path", type=str, default='./checkpoints/self_forcing_dmd.pt', help="Path to the model checkpoint.") | |
| parser.add_argument("--config_path", type=str, default='./configs/self_forcing_dmd.yaml', help="Path to the model config.") | |
| parser.add_argument('--share', action='store_true', help="Create a public Gradio link.") | |
| parser.add_argument('--trt', action='store_true', help="Use TensorRT optimized VAE decoder.") | |
| args = parser.parse_args() | |
| gpu = "cuda" | |
| try: | |
| config = OmegaConf.load(args.config_path) | |
| default_config = OmegaConf.load("configs/default_config.yaml") | |
| config = OmegaConf.merge(default_config, config) | |
| except FileNotFoundError as e: | |
| print(f"Error loading config file: {e}\n. Please ensure config files are in the correct path.") | |
| exit(1) | |
| # Initialize Models | |
| print("Initializing models...") | |
| text_encoder = WanTextEncoder() | |
| transformer = WanDiffusionWrapper(is_causal=True) | |
| try: | |
| state_dict = torch.load(args.checkpoint_path, map_location="cpu") | |
| transformer.load_state_dict(state_dict.get('generator_ema', state_dict.get('generator'))) | |
| except FileNotFoundError as e: | |
| print(f"Error loading checkpoint: {e}\nPlease ensure the checkpoint '{args.checkpoint_path}' exists.") | |
| exit(1) | |
| text_encoder.eval().to(dtype=torch.float16).requires_grad_(False) | |
| transformer.eval().to(dtype=torch.float16).requires_grad_(False) | |
| text_encoder.to(gpu) | |
| transformer.to(gpu) | |
| APP_STATE = { | |
| "torch_compile_applied": False, | |
| "fp8_applied": False, | |
| "current_use_taehv": False, | |
| "current_vae_decoder": None, | |
| } | |
| def initialize_vae_decoder(use_taehv=False, use_trt=False): | |
| if use_trt: | |
| from demo_utils.vae import VAETRTWrapper | |
| print("Initializing TensorRT VAE Decoder...") | |
| vae_decoder = VAETRTWrapper() | |
| APP_STATE["current_use_taehv"] = False | |
| elif use_taehv: | |
| print("Initializing TAEHV VAE Decoder...") | |
| from demo_utils.taehv import TAEHV | |
| taehv_checkpoint_path = "checkpoints/taew2_1.pth" | |
| if not os.path.exists(taehv_checkpoint_path): | |
| print(f"Downloading TAEHV checkpoint to {taehv_checkpoint_path}...") | |
| os.makedirs("checkpoints", exist_ok=True) | |
| download_url = "https://github.com/madebyollin/taehv/raw/main/taew2_1.pth" | |
| try: | |
| urllib.request.urlretrieve(download_url, taehv_checkpoint_path) | |
| except Exception as e: | |
| raise RuntimeError(f"Failed to download taew2_1.pth: {e}") | |
| class DotDict(dict): __getattr__ = dict.get | |
| class TAEHVDiffusersWrapper(torch.nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| self.dtype = torch.float16 | |
| self.taehv = TAEHV(checkpoint_path=taehv_checkpoint_path).to(self.dtype) | |
| self.config = DotDict(scaling_factor=1.0) | |
| def decode(self, latents, return_dict=None): | |
| return self.taehv.decode_video(latents, parallel=not LOW_MEMORY).mul_(2).sub_(1) | |
| vae_decoder = TAEHVDiffusersWrapper() | |
| APP_STATE["current_use_taehv"] = True | |
| else: | |
| print("Initializing Default VAE Decoder...") | |
| vae_decoder = VAEDecoderWrapper() | |
| try: | |
| vae_state_dict = torch.load('wan_models/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth', map_location="cpu") | |
| decoder_state_dict = {k: v for k, v in vae_state_dict.items() if 'decoder.' in k or 'conv2' in k} | |
| vae_decoder.load_state_dict(decoder_state_dict) | |
| except FileNotFoundError: | |
| print("Warning: Default VAE weights not found.") | |
| APP_STATE["current_use_taehv"] = False | |
| vae_decoder.eval().to(dtype=torch.float16).requires_grad_(False).to(gpu) | |
| APP_STATE["current_vae_decoder"] = vae_decoder | |
| print(f"✅ VAE decoder initialized: {'TAEHV' if use_taehv else 'Default VAE'}") | |
| # Initialize with default VAE | |
| initialize_vae_decoder(use_taehv=False, use_trt=args.trt) | |
| pipeline = CausalInferencePipeline( | |
| config, device=gpu, generator=transformer, text_encoder=text_encoder, | |
| vae=APP_STATE["current_vae_decoder"] | |
| ) | |
| pipeline.to(dtype=torch.float16).to(gpu) | |
| # --- Additional Outputs Handler --- | |
| def handle_additional_outputs(status_html_update, video_update, webrtc_output): | |
| return status_html_update, video_update, webrtc_output | |
| # --- FastRTC Video Generation Handler --- | |
| def video_generation_handler(prompt, seed, progress=gr.Progress()): | |
| """ | |
| Generator function that yields BGR NumPy frames for real-time streaming. | |
| Returns cleanly when done - no infinite loops. | |
| """ | |
| if seed == -1: | |
| seed = random.randint(0, 2**32 - 1) | |
| print(f"🎬 Starting video generation with prompt: '{prompt}' and seed: {seed}") | |
| print("🔤 Encoding text prompt...") | |
| conditional_dict = text_encoder(text_prompts=[prompt]) | |
| for key, value in conditional_dict.items(): | |
| conditional_dict[key] = value.to(dtype=torch.float16) | |
| # --- Generation Loop --- | |
| rnd = torch.Generator(gpu).manual_seed(int(seed)) | |
| pipeline._initialize_kv_cache(1, torch.float16, device=gpu) | |
| pipeline._initialize_crossattn_cache(1, torch.float16, device=gpu) | |
| noise = torch.randn([1, 21, 16, 60, 104], device=gpu, dtype=torch.float16, generator=rnd) | |
| vae_cache, latents_cache = None, None | |
| if not APP_STATE["current_use_taehv"] and not args.trt: | |
| vae_cache = [c.to(device=gpu, dtype=torch.float16) for c in ZERO_VAE_CACHE] | |
| num_blocks = 7 | |
| current_start_frame = 0 | |
| all_num_frames = [pipeline.num_frame_per_block] * num_blocks | |
| total_frames_yielded = 0 | |
| all_frames_for_video = [] # To collect frames for final video | |
| for idx, current_num_frames in enumerate(all_num_frames): | |
| print(f"📦 Processing block {idx+1}/{num_blocks} with {current_num_frames} frames") | |
| noisy_input = noise[:, current_start_frame : current_start_frame + current_num_frames] | |
| for step_idx, current_timestep in enumerate(pipeline.denoising_step_list): | |
| timestep = torch.ones([1, current_num_frames], device=noise.device, dtype=torch.int64) * current_timestep | |
| _, denoised_pred = pipeline.generator( | |
| noisy_image_or_video=noisy_input, conditional_dict=conditional_dict, | |
| timestep=timestep, kv_cache=pipeline.kv_cache1, | |
| crossattn_cache=pipeline.crossattn_cache, | |
| current_start=current_start_frame * pipeline.frame_seq_length | |
| ) | |
| if step_idx < len(pipeline.denoising_step_list) - 1: | |
| next_timestep = pipeline.denoising_step_list[step_idx + 1] | |
| noisy_input = pipeline.scheduler.add_noise( | |
| denoised_pred.flatten(0, 1), torch.randn_like(denoised_pred.flatten(0, 1)), | |
| next_timestep * torch.ones([1 * current_num_frames], device=noise.device, dtype=torch.long) | |
| ).unflatten(0, denoised_pred.shape[:2]) | |
| if idx < len(all_num_frames) - 1: | |
| pipeline.generator( | |
| noisy_image_or_video=denoised_pred, conditional_dict=conditional_dict, | |
| timestep=torch.zeros_like(timestep), kv_cache=pipeline.kv_cache1, | |
| crossattn_cache=pipeline.crossattn_cache, | |
| current_start=current_start_frame * pipeline.frame_seq_length, | |
| ) | |
| # Decode to pixels | |
| if args.trt: | |
| pixels, vae_cache = pipeline.vae.forward(denoised_pred.half(), *vae_cache) | |
| elif APP_STATE["current_use_taehv"]: | |
| if latents_cache is None: | |
| latents_cache = denoised_pred | |
| else: | |
| denoised_pred = torch.cat([latents_cache, denoised_pred], dim=1) | |
| latents_cache = denoised_pred[:, -3:] | |
| pixels = pipeline.vae.decode(denoised_pred) | |
| else: | |
| pixels, vae_cache = pipeline.vae(denoised_pred.half(), *vae_cache) | |
| # Handle frame skipping for first block | |
| if idx == 0 and not args.trt: | |
| pixels = pixels[:, 3:] | |
| elif APP_STATE["current_use_taehv"] and idx > 0: | |
| pixels = pixels[:, 12:] | |
| print(f"📹 Decoded pixels shape: {pixels.shape}") | |
| # Yield individual frames WITH status updates | |
| for frame_idx in range(pixels.shape[1]): | |
| frame_tensor = pixels[0, frame_idx] # Get single frame [C, H, W] | |
| # Normalize from [-1, 1] to [0, 255] | |
| frame_np = torch.clamp(frame_tensor.float(), -1., 1.) * 127.5 + 127.5 | |
| frame_np = frame_np.to(torch.uint8).cpu().numpy() | |
| # Convert from CHW to HWC format | |
| frame_np = np.transpose(frame_np, (1, 2, 0)) # CHW -> HWC | |
| all_frames_for_video.append(frame_np) | |
| # Convert RGB to BGR for FastRTC (OpenCV format) | |
| frame_bgr = frame_np[:, :, ::-1] # RGB -> BGR | |
| total_frames_yielded += 1 | |
| print(f"📺 Yielding frame {total_frames_yielded}: shape {frame_bgr.shape}, dtype {frame_bgr.dtype}") | |
| # Calculate progress | |
| total_expected_frames = num_blocks * pipeline.num_frame_per_block | |
| current_frame_count = (idx * pipeline.num_frame_per_block) + frame_idx + 1 | |
| frame_progress = 100 * (current_frame_count / total_expected_frames) | |
| # --- REVISED HTML START --- | |
| if frame_idx == pixels.shape[1] - 1 and idx + 1 == num_blocks: # last frame | |
| status_html = ( | |
| f"<div style='padding: 16px; border: 1px solid #198754; background-color: #d1e7dd; border-radius: 8px; font-family: sans-serif; text-align: center;'>" | |
| f" <h4 style='margin: 0 0 8px 0; color: #0f5132; font-size: 18px;'>🎉 Generation Complete!</h4>" | |
| f" <p style='margin: 0; color: #0f5132;'>" | |
| f" Total frames: {total_frames_yielded}. The final video is now available." | |
| f" </p>" | |
| f"</div>" | |
| ) | |
| print("💾 Saving final rendered video...") | |
| video_update = gr.update() # Default to no-op | |
| try: | |
| video_path = f"gradio_tmp/{seed}_{hashlib.md5(prompt.encode()).hexdigest()}.mp4" | |
| imageio.mimwrite(video_path, all_frames_for_video, fps=15, quality=8) | |
| print(f"✅ Video saved to {video_path}") | |
| video_update = gr.update(value=video_path, visible=True) | |
| except Exception as e: | |
| print(f"⚠️ Could not save final video: {e}") | |
| yield frame_bgr, AdditionalOutputs(status_html, video_update, gr.update(visible=False)) | |
| # yield CloseStream("🎉 Video generation completed successfully!") | |
| return | |
| else: # Regular frames - simpler status | |
| status_html = ( | |
| f"<div style='padding: 10px; border: 1px solid #ddd; border-radius: 8px; font-family: sans-serif;'>" | |
| f" <p style='margin: 0 0 8px 0; font-size: 16px; font-weight: bold;'>Generating Video...</p>" | |
| f" <div style='background: #e9ecef; border-radius: 4px; width: 100%; overflow: hidden;'>" | |
| f" <div style='width: {frame_progress:.1f}%; height: 20px; background-color: #0d6efd; transition: width 0.2s;'></div>" | |
| f" </div>" | |
| f" <p style='margin: 8px 0 0 0; color: #555; font-size: 14px; text-align: right;'>" | |
| f" Block {idx+1}/{num_blocks} | Frame {total_frames_yielded} | {frame_progress:.1f}%" | |
| f" </p>" | |
| f"</div>" | |
| ) | |
| # --- REVISED HTML END --- | |
| yield frame_bgr, AdditionalOutputs(status_html, gr.update(visible=False), gr.update(visible=True)) | |
| current_start_frame += current_num_frames | |
| print(f"✅ Video generation completed! Total frames yielded: {total_frames_yielded}") | |
| # Signal completion | |
| # yield CloseStream("🎉 Video generation completed successfully!") | |
| # --- Gradio UI Layout --- | |
| with gr.Blocks(theme=gr.themes.Soft(), title="Self-Forcing FastRTC Demo") as demo: | |
| gr.Markdown("# 🚀 Self-Forcing Video Generation with FastRTC Streaming") | |
| gr.Markdown("*Real-time video generation streaming via WebRTC*") | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| gr.Markdown("### 📝 Configure Generation") | |
| with gr.Group(): | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| placeholder="A stylish woman walks down a Tokyo street...", | |
| lines=4, | |
| value="A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage." | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| "A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse.", | |
| "A white and orange tabby cat is seen happily darting through a dense garden, as if chasing something. Its eyes are wide and happy as it jogs forward, scanning the branches, flowers, and leaves.", | |
| "A drone shot of a surfer riding a wave on a sunny day. The camera follows the surfer as they carve through the water.", | |
| ], | |
| inputs=[prompt] | |
| ) | |
| with gr.Row(): | |
| seed = gr.Number(label="Seed", value=-1, info="Use -1 for a random seed.") | |
| with gr.Accordion("⚙️ Performance Options", open=False): | |
| gr.Markdown("*These optimizations are applied once per session*") | |
| start_btn = gr.Button("🎬 Start Generation", variant="primary", size="lg") | |
| with gr.Column(scale=3): | |
| gr.Markdown("### 📺 Live Video Stream") | |
| gr.Markdown("*Click 'Start Generation' to begin streaming*") | |
| webrtc_output = WebRTC( | |
| label="Generated Video Stream", | |
| modality="video", | |
| mode="receive", # Server sends video to client | |
| height=480, | |
| width=832, | |
| rtc_configuration=get_cloudflare_turn_credentials(), | |
| elem_id="video_stream" | |
| ) | |
| final_video = gr.Video(label="Final Rendered Video", visible=False, interactive=False) | |
| status_html = gr.HTML( | |
| value="<div style='text-align: center; padding: 20px; color: #666;'>Ready to start generation...</div>", | |
| label="Generation Status" | |
| ) | |
| # Connect the generator to the WebRTC stream | |
| webrtc_output.stream( | |
| fn=video_generation_handler, | |
| inputs=[prompt, seed], | |
| outputs=[webrtc_output], | |
| time_limit=300, # 5 minutes max | |
| trigger=start_btn.click, | |
| ) | |
| # MODIFIED: Handle additional outputs (status updates AND final video) | |
| webrtc_output.on_additional_outputs( | |
| fn=handle_additional_outputs, | |
| outputs=[status_html, final_video, webrtc_output] | |
| ) | |
| # --- Launch App --- | |
| if __name__ == "__main__": | |
| if os.path.exists("gradio_tmp"): | |
| import shutil | |
| shutil.rmtree("gradio_tmp") | |
| os.makedirs("gradio_tmp", exist_ok=True) | |
| demo.queue().launch( | |
| server_name=args.host, | |
| server_port=args.port, | |
| share=args.share, | |
| show_error=True | |
| ) |