Spaces:
Runtime error
Runtime error
| from typing import List | |
| from einops import rearrange | |
| import tensorrt as trt | |
| import torch | |
| import torch.nn as nn | |
| from demo_utils.constant import ALL_INPUTS_NAMES, ZERO_VAE_CACHE | |
| from wan.modules.vae import AttentionBlock, CausalConv3d, RMS_norm, Upsample | |
| CACHE_T = 2 | |
| class ResidualBlock(nn.Module): | |
| def __init__(self, in_dim, out_dim, dropout=0.0): | |
| super().__init__() | |
| self.in_dim = in_dim | |
| self.out_dim = out_dim | |
| # layers | |
| self.residual = nn.Sequential( | |
| RMS_norm(in_dim, images=False), nn.SiLU(), | |
| CausalConv3d(in_dim, out_dim, 3, padding=1), | |
| RMS_norm(out_dim, images=False), nn.SiLU(), nn.Dropout(dropout), | |
| CausalConv3d(out_dim, out_dim, 3, padding=1)) | |
| self.shortcut = CausalConv3d(in_dim, out_dim, 1) \ | |
| if in_dim != out_dim else nn.Identity() | |
| def forward(self, x, feat_cache_1, feat_cache_2): | |
| h = self.shortcut(x) | |
| feat_cache = feat_cache_1 | |
| out_feat_cache = [] | |
| for layer in self.residual: | |
| if isinstance(layer, CausalConv3d): | |
| cache_x = x[:, :, -CACHE_T:, :, :].clone() | |
| if cache_x.shape[2] < 2 and feat_cache is not None: | |
| # cache last frame of last two chunk | |
| cache_x = torch.cat([ | |
| feat_cache[:, :, -1, :, :].unsqueeze(2).to( | |
| cache_x.device), cache_x | |
| ], | |
| dim=2) | |
| x = layer(x, feat_cache) | |
| out_feat_cache.append(cache_x) | |
| feat_cache = feat_cache_2 | |
| else: | |
| x = layer(x) | |
| return x + h, *out_feat_cache | |
| class Resample(nn.Module): | |
| def __init__(self, dim, mode): | |
| assert mode in ('none', 'upsample2d', 'upsample3d') | |
| super().__init__() | |
| self.dim = dim | |
| self.mode = mode | |
| # layers | |
| if mode == 'upsample2d': | |
| self.resample = nn.Sequential( | |
| Upsample(scale_factor=(2., 2.), mode='nearest'), | |
| nn.Conv2d(dim, dim // 2, 3, padding=1)) | |
| elif mode == 'upsample3d': | |
| self.resample = nn.Sequential( | |
| Upsample(scale_factor=(2., 2.), mode='nearest'), | |
| nn.Conv2d(dim, dim // 2, 3, padding=1)) | |
| self.time_conv = CausalConv3d( | |
| dim, dim * 2, (3, 1, 1), padding=(1, 0, 0)) | |
| else: | |
| self.resample = nn.Identity() | |
| def forward(self, x, is_first_frame, feat_cache): | |
| if self.mode == 'upsample3d': | |
| b, c, t, h, w = x.size() | |
| # x, out_feat_cache = torch.cond( | |
| # is_first_frame, | |
| # lambda: (torch.cat([torch.zeros_like(x), x], dim=2), feat_cache.clone()), | |
| # lambda: self.temporal_conv(x, feat_cache), | |
| # ) | |
| # x, out_feat_cache = torch.cond( | |
| # is_first_frame, | |
| # lambda: (torch.cat([torch.zeros_like(x), x], dim=2), feat_cache.clone()), | |
| # lambda: self.temporal_conv(x, feat_cache), | |
| # ) | |
| x, out_feat_cache = self.temporal_conv(x, is_first_frame, feat_cache) | |
| out_feat_cache = torch.cond( | |
| is_first_frame, | |
| lambda: feat_cache.clone().contiguous(), | |
| lambda: out_feat_cache.clone().contiguous(), | |
| ) | |
| # if is_first_frame: | |
| # x = torch.cat([torch.zeros_like(x), x], dim=2) | |
| # out_feat_cache = feat_cache.clone() | |
| # else: | |
| # x, out_feat_cache = self.temporal_conv(x, feat_cache) | |
| else: | |
| out_feat_cache = None | |
| t = x.shape[2] | |
| x = rearrange(x, 'b c t h w -> (b t) c h w') | |
| x = self.resample(x) | |
| x = rearrange(x, '(b t) c h w -> b c t h w', t=t) | |
| return x, out_feat_cache | |
| def temporal_conv(self, x, is_first_frame, feat_cache): | |
| b, c, t, h, w = x.size() | |
| cache_x = x[:, :, -CACHE_T:, :, :].clone() | |
| if cache_x.shape[2] < 2 and feat_cache is not None: | |
| cache_x = torch.cat([ | |
| torch.zeros_like(cache_x), | |
| cache_x | |
| ], dim=2) | |
| x = torch.cond( | |
| is_first_frame, | |
| lambda: torch.cat([torch.zeros_like(x), x], dim=1).contiguous(), | |
| lambda: self.time_conv(x, feat_cache).contiguous(), | |
| ) | |
| # x = self.time_conv(x, feat_cache) | |
| out_feat_cache = cache_x | |
| x = x.reshape(b, 2, c, t, h, w) | |
| x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), | |
| 3) | |
| x = x.reshape(b, c, t * 2, h, w) | |
| return x.contiguous(), out_feat_cache.contiguous() | |
| def init_weight(self, conv): | |
| conv_weight = conv.weight | |
| nn.init.zeros_(conv_weight) | |
| c1, c2, t, h, w = conv_weight.size() | |
| one_matrix = torch.eye(c1, c2) | |
| init_matrix = one_matrix | |
| nn.init.zeros_(conv_weight) | |
| # conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5 | |
| conv_weight.data[:, :, 1, 0, 0] = init_matrix # * 0.5 | |
| conv.weight.data.copy_(conv_weight) | |
| nn.init.zeros_(conv.bias.data) | |
| def init_weight2(self, conv): | |
| conv_weight = conv.weight.data | |
| nn.init.zeros_(conv_weight) | |
| c1, c2, t, h, w = conv_weight.size() | |
| init_matrix = torch.eye(c1 // 2, c2) | |
| # init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2) | |
| conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix | |
| conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix | |
| conv.weight.data.copy_(conv_weight) | |
| nn.init.zeros_(conv.bias.data) | |
| class VAEDecoderWrapperSingle(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| self.decoder = VAEDecoder3d() | |
| mean = [ | |
| -0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508, | |
| 0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921 | |
| ] | |
| std = [ | |
| 2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743, | |
| 3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160 | |
| ] | |
| self.mean = torch.tensor(mean, dtype=torch.float32) | |
| self.std = torch.tensor(std, dtype=torch.float32) | |
| self.z_dim = 16 | |
| self.conv2 = CausalConv3d(self.z_dim, self.z_dim, 1) | |
| def forward( | |
| self, | |
| z: torch.Tensor, | |
| is_first_frame: torch.Tensor, | |
| *feat_cache: List[torch.Tensor] | |
| ): | |
| # from [batch_size, num_frames, num_channels, height, width] | |
| # to [batch_size, num_channels, num_frames, height, width] | |
| z = z.permute(0, 2, 1, 3, 4) | |
| assert z.shape[2] == 1 | |
| feat_cache = list(feat_cache) | |
| is_first_frame = is_first_frame.bool() | |
| device, dtype = z.device, z.dtype | |
| scale = [self.mean.to(device=device, dtype=dtype), | |
| 1.0 / self.std.to(device=device, dtype=dtype)] | |
| if isinstance(scale[0], torch.Tensor): | |
| z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view( | |
| 1, self.z_dim, 1, 1, 1) | |
| else: | |
| z = z / scale[1] + scale[0] | |
| x = self.conv2(z) | |
| out, feat_cache = self.decoder(x, is_first_frame, feat_cache=feat_cache) | |
| out = out.clamp_(-1, 1) | |
| # from [batch_size, num_channels, num_frames, height, width] | |
| # to [batch_size, num_frames, num_channels, height, width] | |
| out = out.permute(0, 2, 1, 3, 4) | |
| return out, feat_cache | |
| class VAEDecoder3d(nn.Module): | |
| def __init__(self, | |
| dim=96, | |
| z_dim=16, | |
| dim_mult=[1, 2, 4, 4], | |
| num_res_blocks=2, | |
| attn_scales=[], | |
| temperal_upsample=[True, True, False], | |
| dropout=0.0): | |
| super().__init__() | |
| self.dim = dim | |
| self.z_dim = z_dim | |
| self.dim_mult = dim_mult | |
| self.num_res_blocks = num_res_blocks | |
| self.attn_scales = attn_scales | |
| self.temperal_upsample = temperal_upsample | |
| self.cache_t = 2 | |
| self.decoder_conv_num = 32 | |
| # dimensions | |
| dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]] | |
| scale = 1.0 / 2**(len(dim_mult) - 2) | |
| # init block | |
| self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1) | |
| # middle blocks | |
| self.middle = nn.Sequential( | |
| ResidualBlock(dims[0], dims[0], dropout), AttentionBlock(dims[0]), | |
| ResidualBlock(dims[0], dims[0], dropout)) | |
| # upsample blocks | |
| upsamples = [] | |
| for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): | |
| # residual (+attention) blocks | |
| if i == 1 or i == 2 or i == 3: | |
| in_dim = in_dim // 2 | |
| for _ in range(num_res_blocks + 1): | |
| upsamples.append(ResidualBlock(in_dim, out_dim, dropout)) | |
| if scale in attn_scales: | |
| upsamples.append(AttentionBlock(out_dim)) | |
| in_dim = out_dim | |
| # upsample block | |
| if i != len(dim_mult) - 1: | |
| mode = 'upsample3d' if temperal_upsample[i] else 'upsample2d' | |
| upsamples.append(Resample(out_dim, mode=mode)) | |
| scale *= 2.0 | |
| self.upsamples = nn.Sequential(*upsamples) | |
| # output blocks | |
| self.head = nn.Sequential( | |
| RMS_norm(out_dim, images=False), nn.SiLU(), | |
| CausalConv3d(out_dim, 3, 3, padding=1)) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| is_first_frame: torch.Tensor, | |
| feat_cache: List[torch.Tensor] | |
| ): | |
| idx = 0 | |
| out_feat_cache = [] | |
| # conv1 | |
| cache_x = x[:, :, -self.cache_t:, :, :].clone() | |
| if cache_x.shape[2] < 2 and feat_cache[idx] is not None: | |
| # cache last frame of last two chunk | |
| cache_x = torch.cat([ | |
| feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( | |
| cache_x.device), cache_x | |
| ], | |
| dim=2) | |
| x = self.conv1(x, feat_cache[idx]) | |
| out_feat_cache.append(cache_x) | |
| idx += 1 | |
| # middle | |
| for layer in self.middle: | |
| if isinstance(layer, ResidualBlock) and feat_cache is not None: | |
| x, out_feat_cache_1, out_feat_cache_2 = layer(x, feat_cache[idx], feat_cache[idx + 1]) | |
| idx += 2 | |
| out_feat_cache.append(out_feat_cache_1) | |
| out_feat_cache.append(out_feat_cache_2) | |
| else: | |
| x = layer(x) | |
| # upsamples | |
| for layer in self.upsamples: | |
| if isinstance(layer, Resample): | |
| x, cache_x = layer(x, is_first_frame, feat_cache[idx]) | |
| if cache_x is not None: | |
| out_feat_cache.append(cache_x) | |
| idx += 1 | |
| else: | |
| x, out_feat_cache_1, out_feat_cache_2 = layer(x, feat_cache[idx], feat_cache[idx + 1]) | |
| idx += 2 | |
| out_feat_cache.append(out_feat_cache_1) | |
| out_feat_cache.append(out_feat_cache_2) | |
| # head | |
| for layer in self.head: | |
| if isinstance(layer, CausalConv3d) and feat_cache is not None: | |
| cache_x = x[:, :, -self.cache_t:, :, :].clone() | |
| if cache_x.shape[2] < 2 and feat_cache[idx] is not None: | |
| # cache last frame of last two chunk | |
| cache_x = torch.cat([ | |
| feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( | |
| cache_x.device), cache_x | |
| ], | |
| dim=2) | |
| x = layer(x, feat_cache[idx]) | |
| out_feat_cache.append(cache_x) | |
| idx += 1 | |
| else: | |
| x = layer(x) | |
| return x, out_feat_cache | |
| class VAETRTWrapper(): | |
| def __init__(self): | |
| TRT_LOGGER = trt.Logger(trt.Logger.WARNING) | |
| with open("checkpoints/vae_decoder_int8.trt", "rb") as f, trt.Runtime(TRT_LOGGER) as rt: | |
| self.engine: trt.ICudaEngine = rt.deserialize_cuda_engine(f.read()) | |
| self.context: trt.IExecutionContext = self.engine.create_execution_context() | |
| self.stream = torch.cuda.current_stream().cuda_stream | |
| # ββββββββββββββββββββββββββββββ | |
| # 2οΈβ£ Feed the engine with tensors | |
| # (name-based API in TRT β₯10) | |
| # ββββββββββββββββββββββββββββββ | |
| self.dtype_map = { | |
| trt.float32: torch.float32, | |
| trt.float16: torch.float16, | |
| trt.int8: torch.int8, | |
| trt.int32: torch.int32, | |
| } | |
| test_input = torch.zeros(1, 16, 1, 60, 104).cuda().half() | |
| is_first_frame = torch.tensor(1.0).cuda().half() | |
| test_cache_inputs = [c.cuda().half() for c in ZERO_VAE_CACHE] | |
| test_inputs = [test_input, is_first_frame] + test_cache_inputs | |
| # keep references so buffers stay alive | |
| self.device_buffers, self.outputs = {}, [] | |
| # ---- inputs ---- | |
| for i, name in enumerate(ALL_INPUTS_NAMES): | |
| tensor, scale = test_inputs[i], 1 / 127 | |
| tensor = self.quantize_if_needed(tensor, self.engine.get_tensor_dtype(name), scale) | |
| # dynamic shapes | |
| if -1 in self.engine.get_tensor_shape(name): | |
| # new API :contentReference[oaicite:0]{index=0} | |
| self.context.set_input_shape(name, tuple(tensor.shape)) | |
| # replaces bindings[] :contentReference[oaicite:1]{index=1} | |
| self.context.set_tensor_address(name, int(tensor.data_ptr())) | |
| self.device_buffers[name] = tensor # keep pointer alive | |
| # ---- (after all input shapes are known) infer output shapes ---- | |
| # propagates shapes :contentReference[oaicite:2]{index=2} | |
| self.context.infer_shapes() | |
| for i in range(self.engine.num_io_tensors): | |
| name = self.engine.get_tensor_name(i) | |
| # replaces binding_is_input :contentReference[oaicite:3]{index=3} | |
| if self.engine.get_tensor_mode(name) == trt.TensorIOMode.OUTPUT: | |
| shape = tuple(self.context.get_tensor_shape(name)) | |
| dtype = self.dtype_map[self.engine.get_tensor_dtype(name)] | |
| out = torch.empty(shape, dtype=dtype, device="cuda").contiguous() | |
| self.context.set_tensor_address(name, int(out.data_ptr())) | |
| self.outputs.append(out) | |
| self.device_buffers[name] = out | |
| # helper to quant-convert on the fly | |
| def quantize_if_needed(self, t, expected_dtype, scale): | |
| if expected_dtype == trt.int8 and t.dtype != torch.int8: | |
| t = torch.clamp((t / scale).round(), -128, 127).to(torch.int8).contiguous() | |
| return t # keep pointer alive | |
| def forward(self, *test_inputs): | |
| for i, name in enumerate(ALL_INPUTS_NAMES): | |
| tensor, scale = test_inputs[i], 1 / 127 | |
| tensor = self.quantize_if_needed(tensor, self.engine.get_tensor_dtype(name), scale) | |
| self.context.set_tensor_address(name, int(tensor.data_ptr())) | |
| self.device_buffers[name] = tensor | |
| self.context.execute_async_v3(stream_handle=self.stream) | |
| torch.cuda.current_stream().synchronize() | |
| return self.outputs | |