Spaces:
Running
Running
Irpan
commited on
Commit
·
30e5da4
1
Parent(s):
4c14db4
asr
Browse files
app.py
CHANGED
|
@@ -37,7 +37,7 @@ mms_synthesize = gr.Interface(
|
|
| 37 |
)
|
| 38 |
],
|
| 39 |
outputs=[
|
| 40 |
-
gr.Audio(label="Generated Audio"
|
| 41 |
],
|
| 42 |
#examples=TTS_EXAMPLES,
|
| 43 |
title="Text-to-speech",
|
|
|
|
| 37 |
)
|
| 38 |
],
|
| 39 |
outputs=[
|
| 40 |
+
gr.Audio(label="Generated Audio"),
|
| 41 |
],
|
| 42 |
#examples=TTS_EXAMPLES,
|
| 43 |
title="Text-to-speech",
|
tts.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
from transformers import VitsModel, AutoTokenizer
|
| 2 |
import torch
|
| 3 |
-
import
|
| 4 |
|
| 5 |
# Load processor and model
|
| 6 |
models_info = {
|
|
@@ -9,15 +9,18 @@ models_info = {
|
|
| 9 |
"model": VitsModel.from_pretrained("facebook/mms-tts-uig-script_arabic"),
|
| 10 |
},
|
| 11 |
}
|
|
|
|
| 12 |
|
| 13 |
def synthesize(text, model_id):
|
| 14 |
processor = models_info[model_id]["processor"]
|
| 15 |
-
model = models_info[model_id]["model"]
|
| 16 |
-
inputs = processor(text, return_tensors="pt")
|
| 17 |
|
| 18 |
with torch.no_grad():
|
| 19 |
-
output =
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
| 1 |
from transformers import VitsModel, AutoTokenizer
|
| 2 |
import torch
|
| 3 |
+
import scipy.io.wavfile
|
| 4 |
|
| 5 |
# Load processor and model
|
| 6 |
models_info = {
|
|
|
|
| 9 |
"model": VitsModel.from_pretrained("facebook/mms-tts-uig-script_arabic"),
|
| 10 |
},
|
| 11 |
}
|
| 12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
|
| 14 |
def synthesize(text, model_id):
|
| 15 |
processor = models_info[model_id]["processor"]
|
| 16 |
+
model = models_info[model_id]["model"].to(device)
|
| 17 |
+
inputs = processor(text, return_tensors="pt").to(device)
|
| 18 |
|
| 19 |
with torch.no_grad():
|
| 20 |
+
output = tts_model(**inputs).waveform.cpu() # Move output back to CPU for saving
|
| 21 |
|
| 22 |
+
output_path = "tts_output.wav"
|
| 23 |
+
sample_rate = 16000
|
| 24 |
+
scipy.io.wavfile.write(output_path, rate=sample_rate, data=output.numpy()[0])
|
| 25 |
+
|
| 26 |
+
return output_path
|