Spaces:
Runtime error
Runtime error
requirements added
Browse files
app.py
CHANGED
@@ -14,6 +14,7 @@ from transformers.models.auto.configuration_auto import CONFIG_MAPPING
|
|
14 |
class Phi3Config(PretrainedConfig):
|
15 |
model_type = "phi3"
|
16 |
|
|
|
17 |
CONFIG_MAPPING["phi3"] = Phi3Config
|
18 |
|
19 |
# --- Standard imports ---
|
@@ -24,7 +25,7 @@ import torch
|
|
24 |
# Import PEFT for parameter-efficient fine-tuning
|
25 |
from peft import LoraConfig, get_peft_model
|
26 |
|
27 |
-
# --- Setup directories ---
|
28 |
cache_dir = "./cache"
|
29 |
os.makedirs(cache_dir, exist_ok=True)
|
30 |
output_dir = "./output/mibera-v1-merged"
|
@@ -32,16 +33,18 @@ os.makedirs(output_dir, exist_ok=True)
|
|
32 |
offload_folder = "./offload"
|
33 |
os.makedirs(offload_folder, exist_ok=True)
|
34 |
|
|
|
35 |
os.environ["HF_HOME"] = os.path.join(cache_dir, ".huggingface")
|
36 |
os.environ["HF_DATASETS_CACHE"] = os.path.join(cache_dir, "datasets_cache")
|
37 |
os.environ["TRANSFORMERS_CACHE"] = os.path.join(cache_dir, "transformers")
|
38 |
|
|
|
39 |
json_cache_dir = os.path.join(cache_dir, "datasets_cache", "json")
|
40 |
if os.path.exists(json_cache_dir):
|
41 |
shutil.rmtree(json_cache_dir)
|
42 |
|
43 |
# --- Define paths ---
|
44 |
-
dataset_path = 'datasets/finetune_dataset_ready.jsonl'
|
45 |
model_name = "microsoft/phi-4"
|
46 |
HF_REPO = "ivxxdegen/mibera-v1-merged"
|
47 |
|
@@ -49,51 +52,48 @@ if not os.path.exists(dataset_path):
|
|
49 |
print(f"Dataset file {dataset_path} not found. Please upload it!")
|
50 |
exit(1)
|
51 |
|
|
|
52 |
print("π₯ Loading dataset using pandas...")
|
53 |
df = pd.read_json(dataset_path, lines=True)
|
54 |
dataset = Dataset.from_pandas(df)
|
55 |
print("Dataset columns:", dataset.column_names)
|
56 |
|
|
|
57 |
split_dataset = dataset.train_test_split(test_size=0.1, seed=42)
|
58 |
train_dataset = split_dataset["train"]
|
59 |
eval_dataset = split_dataset["test"]
|
60 |
|
|
|
61 |
print("π₯ Loading tokenizer and model with trust_remote_code=True and offloading...")
|
62 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
63 |
-
max_memory = {0: "10GiB"}
|
64 |
model = AutoModelForCausalLM.from_pretrained(
|
65 |
model_name,
|
66 |
trust_remote_code=True,
|
67 |
-
device_map="auto",
|
68 |
max_memory=max_memory,
|
69 |
offload_folder=offload_folder,
|
70 |
low_cpu_mem_usage=True,
|
71 |
-
offload_state_dict=True
|
72 |
)
|
73 |
torch.cuda.empty_cache()
|
74 |
model.gradient_checkpointing_enable()
|
75 |
|
76 |
-
# ---
|
77 |
-
|
78 |
-
for name, module in model.named_modules():
|
79 |
-
if "attn" in name or "query" in name or "value" in name:
|
80 |
-
print(name)
|
81 |
-
# After inspecting the output, update target_modules below accordingly
|
82 |
-
|
83 |
-
# --- Configure PEFT (LoRA) ---
|
84 |
-
# Replace the target_modules list with the correct module names from the inspection step.
|
85 |
lora_config = LoraConfig(
|
86 |
-
r=16,
|
87 |
-
lora_alpha=32,
|
88 |
-
target_modules=["
|
89 |
lora_dropout=0.1,
|
90 |
bias="none"
|
91 |
)
|
92 |
model = get_peft_model(model, lora_config)
|
93 |
model.print_trainable_parameters()
|
94 |
|
95 |
-
# --- Preprocess dataset ---
|
96 |
def preprocess_function(examples):
|
|
|
97 |
tweets = examples.get("tweet", [])
|
98 |
lores = examples.get("lore", [])
|
99 |
combined_texts = []
|
@@ -107,6 +107,7 @@ tokenized_train = train_dataset.map(preprocess_function, batched=True)
|
|
107 |
print("π Preprocessing eval dataset...")
|
108 |
tokenized_eval = eval_dataset.map(preprocess_function, batched=True)
|
109 |
|
|
|
110 |
def add_labels(batch):
|
111 |
batch["labels"] = batch["input_ids"].copy()
|
112 |
return batch
|
@@ -116,18 +117,19 @@ tokenized_train = tokenized_train.map(add_labels, batched=True)
|
|
116 |
print("π Adding labels to eval dataset...")
|
117 |
tokenized_eval = tokenized_eval.map(add_labels, batched=True)
|
118 |
|
|
|
119 |
training_args = TrainingArguments(
|
120 |
output_dir=output_dir,
|
121 |
-
evaluation_strategy="epoch",
|
122 |
logging_dir="./logs",
|
123 |
logging_steps=500,
|
124 |
num_train_epochs=3,
|
125 |
-
per_device_train_batch_size=1,
|
126 |
-
gradient_accumulation_steps=8,
|
127 |
-
fp16=True,
|
128 |
)
|
129 |
|
130 |
-
# Initialize Trainer
|
131 |
trainer = Trainer(
|
132 |
model=model,
|
133 |
args=training_args,
|
@@ -136,7 +138,7 @@ trainer = Trainer(
|
|
136 |
tokenizer=tokenizer,
|
137 |
)
|
138 |
|
139 |
-
# ---
|
140 |
api = HfApi()
|
141 |
print(f"π Deleting previous version from Hugging Face: {HF_REPO}...")
|
142 |
try:
|
@@ -144,9 +146,11 @@ try:
|
|
144 |
except Exception as e:
|
145 |
print(f"β οΈ Could not delete the existing model: {e}. Proceeding with a clean upload...")
|
146 |
|
|
|
147 |
print("π Starting training...")
|
148 |
trainer.train()
|
149 |
|
|
|
150 |
print("πΎ Saving model and tokenizer...")
|
151 |
model.save_pretrained(output_dir)
|
152 |
tokenizer.save_pretrained(output_dir)
|
|
|
14 |
class Phi3Config(PretrainedConfig):
|
15 |
model_type = "phi3"
|
16 |
|
17 |
+
# Register our dummy config class for "phi3"
|
18 |
CONFIG_MAPPING["phi3"] = Phi3Config
|
19 |
|
20 |
# --- Standard imports ---
|
|
|
25 |
# Import PEFT for parameter-efficient fine-tuning
|
26 |
from peft import LoraConfig, get_peft_model
|
27 |
|
28 |
+
# --- Setup local directories for cache, output, and offload ---
|
29 |
cache_dir = "./cache"
|
30 |
os.makedirs(cache_dir, exist_ok=True)
|
31 |
output_dir = "./output/mibera-v1-merged"
|
|
|
33 |
offload_folder = "./offload"
|
34 |
os.makedirs(offload_folder, exist_ok=True)
|
35 |
|
36 |
+
# Set environment variables for caching to local, writable directories
|
37 |
os.environ["HF_HOME"] = os.path.join(cache_dir, ".huggingface")
|
38 |
os.environ["HF_DATASETS_CACHE"] = os.path.join(cache_dir, "datasets_cache")
|
39 |
os.environ["TRANSFORMERS_CACHE"] = os.path.join(cache_dir, "transformers")
|
40 |
|
41 |
+
# Clear any existing JSON cache to force a fresh load
|
42 |
json_cache_dir = os.path.join(cache_dir, "datasets_cache", "json")
|
43 |
if os.path.exists(json_cache_dir):
|
44 |
shutil.rmtree(json_cache_dir)
|
45 |
|
46 |
# --- Define paths ---
|
47 |
+
dataset_path = 'datasets/finetune_dataset_ready.jsonl' # Make sure this is the correct path to your merged JSONL file
|
48 |
model_name = "microsoft/phi-4"
|
49 |
HF_REPO = "ivxxdegen/mibera-v1-merged"
|
50 |
|
|
|
52 |
print(f"Dataset file {dataset_path} not found. Please upload it!")
|
53 |
exit(1)
|
54 |
|
55 |
+
# --- Load the dataset using pandas ---
|
56 |
print("π₯ Loading dataset using pandas...")
|
57 |
df = pd.read_json(dataset_path, lines=True)
|
58 |
dataset = Dataset.from_pandas(df)
|
59 |
print("Dataset columns:", dataset.column_names)
|
60 |
|
61 |
+
# --- Split the dataset into train and evaluation subsets ---
|
62 |
split_dataset = dataset.train_test_split(test_size=0.1, seed=42)
|
63 |
train_dataset = split_dataset["train"]
|
64 |
eval_dataset = split_dataset["test"]
|
65 |
|
66 |
+
# --- Load the tokenizer and model with trust_remote_code=True and offloading ---
|
67 |
print("π₯ Loading tokenizer and model with trust_remote_code=True and offloading...")
|
68 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
69 |
+
max_memory = {0: "10GiB"} # Limit GPU 0 usage to 10GiB; adjust as needed
|
70 |
model = AutoModelForCausalLM.from_pretrained(
|
71 |
model_name,
|
72 |
trust_remote_code=True,
|
73 |
+
device_map="auto", # Automatically map layers between GPU and CPU
|
74 |
max_memory=max_memory,
|
75 |
offload_folder=offload_folder,
|
76 |
low_cpu_mem_usage=True,
|
77 |
+
offload_state_dict=True # Offload state dict from meta
|
78 |
)
|
79 |
torch.cuda.empty_cache()
|
80 |
model.gradient_checkpointing_enable()
|
81 |
|
82 |
+
# --- Integrate PEFT (LoRA) ---
|
83 |
+
# Based on inspection, the model uses "qkv_proj" for query, key, and value projections.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
lora_config = LoraConfig(
|
85 |
+
r=16, # LoRA rank
|
86 |
+
lora_alpha=32, # Scaling factor
|
87 |
+
target_modules=["qkv_proj"], # Use "qkv_proj" based on model inspection
|
88 |
lora_dropout=0.1,
|
89 |
bias="none"
|
90 |
)
|
91 |
model = get_peft_model(model, lora_config)
|
92 |
model.print_trainable_parameters()
|
93 |
|
94 |
+
# --- Preprocess the dataset ---
|
95 |
def preprocess_function(examples):
|
96 |
+
# In batched mode, each field is a list.
|
97 |
tweets = examples.get("tweet", [])
|
98 |
lores = examples.get("lore", [])
|
99 |
combined_texts = []
|
|
|
107 |
print("π Preprocessing eval dataset...")
|
108 |
tokenized_eval = eval_dataset.map(preprocess_function, batched=True)
|
109 |
|
110 |
+
# --- Add labels to tokenized data ---
|
111 |
def add_labels(batch):
|
112 |
batch["labels"] = batch["input_ids"].copy()
|
113 |
return batch
|
|
|
117 |
print("π Adding labels to eval dataset...")
|
118 |
tokenized_eval = tokenized_eval.map(add_labels, batched=True)
|
119 |
|
120 |
+
# --- Set training arguments ---
|
121 |
training_args = TrainingArguments(
|
122 |
output_dir=output_dir,
|
123 |
+
evaluation_strategy="epoch", # Future: use eval_strategy
|
124 |
logging_dir="./logs",
|
125 |
logging_steps=500,
|
126 |
num_train_epochs=3,
|
127 |
+
per_device_train_batch_size=1, # Low batch size to minimize memory usage
|
128 |
+
gradient_accumulation_steps=8, # Accumulate gradients to simulate a larger effective batch size
|
129 |
+
fp16=True, # Mixed precision training
|
130 |
)
|
131 |
|
132 |
+
# --- Initialize Trainer ---
|
133 |
trainer = Trainer(
|
134 |
model=model,
|
135 |
args=training_args,
|
|
|
138 |
tokenizer=tokenizer,
|
139 |
)
|
140 |
|
141 |
+
# --- Clear the existing model repository on Hugging Face (optional) ---
|
142 |
api = HfApi()
|
143 |
print(f"π Deleting previous version from Hugging Face: {HF_REPO}...")
|
144 |
try:
|
|
|
146 |
except Exception as e:
|
147 |
print(f"β οΈ Could not delete the existing model: {e}. Proceeding with a clean upload...")
|
148 |
|
149 |
+
# --- Start training ---
|
150 |
print("π Starting training...")
|
151 |
trainer.train()
|
152 |
|
153 |
+
# --- Save the fine-tuned model and tokenizer ---
|
154 |
print("πΎ Saving model and tokenizer...")
|
155 |
model.save_pretrained(output_dir)
|
156 |
tokenizer.save_pretrained(output_dir)
|